
Slicer4J: A Dynamic Slicer for Java

Khaled Ahmed
Univ. of British Columbia, Canada

khaledea@ece.ubc.ca

Mieszko Lis
Univ. of British Columbia, Canada

mieszko@ece.ubc.ca

Julia Rubin
Univ. of British Columbia, Canada

mjulia@ece.ubc.ca

ABSTRACT

Dynamic program slicing is used in a variety of tasks, including

program debugging and security analysis. Despite being extensively

studied in the literature, the only dynamic slicing solution for Java

programs that is publicly available today is a tool named JavaSlicer.

Unfortunately, JavaSlicer only supports programs written in Java 6

or below and does not support multithreading. To address these lim-

itations, this paper contributes a new dynamic slicing tool for Java,

named Slicer4J. Slicer4J uses low-overhead instrumentation to

collect a runtime execution trace; it then constructs a thread-aware,

inter-procedural dynamic control-flow graph and uses the graph

to compute the slice. To support slicing through Java framework

methods and native code, Slicer4J relies on a set of pre-constructed

data-flow summaries of the main framework methods. It also allows

the users to further customize this set, adding user-defined meth-

ods when needed. We demonstrate the applicability of Slicer4J on

ten benchmark and open-source Java programs, comparing it with

JavaSlicer, and discuss how to use and extend the tool.

Tool package and demo: https://github.com/resess/Slicer4J

CCS CONCEPTS

· Theory of computation → Program analysis; · Software

and its engineering→ Maintaining software.

KEYWORDS

Program analysis, dynamic slicing, Java

ACM Reference Format:

Khaled Ahmed, Mieszko Lis, and Julia Rubin. 2021. Slicer4J: A Dynamic

Slicer for Java. In Proceedings of the 29th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engi-

neering (ESEC/FSE ’21), August 23ś28, 2021, Athens, Greece. ACM, New York,

NY, USA, 5 pages. https://doi.org/10.1145/3468264.3473123

1 INTRODUCTION

Program slicing [22] computes the set of statements that affect a

particular variable or statement of interest, often referred to as a

slicing criterion. Slicing techniques are used in a variety of tasks, e.g.,

program debugging, to help locate the origin of an error. Slicing

can be performed either statically or dynamically [14]. While static

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3473123

slicing considers all possible program paths leading to the slicing

criterion, dynamic slicing focuses on one concrete execution.

The main idea behind a dynamic slicing tool is to first collect an

execution trace of a program, i.e., the set of all executed program

statements. Then, the tool inspects control and data dependencies

of the trace statements, identifying statements that affect the slicing

criterion and omitting the rest. The produced dynamic slices are

more compact than static ones, making them particularly suitable

for debugging activities [1, 2].

While there is a large number of papers proposing and optimizing

dynamic slicing techniques, e.g., [6, 16, 17, 20], only one dynamic

slicing solution of Java programs is publicly available at the time

of writing: JavaSlicer [10, 11]. JavaSlicer is an efficient tool that is

optimized for low instrumentation overhead with the capability

of producing compressed traces for space optimization. However,

the tool has several limitations: it does not support newer language

constructs from Java versions above 6, e.g., lambda expressions; it

does not support multithreading, producing instead one separate

slice per thread; and it cannot handle certain Java framework meth-

ods, as well as framework and custom methods implemented in

native code, e.g., java.lang.System.arraycopy(...).

To address these issues, we contribute a dynamic slicing tool,

named Slicer4J, which supports Java version 9, multithreading, and

modeling of Java framework methods. Slicer4J relies on the infras-

tructure we created for slicing Android applications [3], adapting it

to support stand-alone Java programs. The implementation and the

documentation of Slicer4J is available online [4]. We also demon-

strate the applicability of Slicer4J and compare it with JavaSlicer

on ten Java programs.

Researchers and tool developers can use Slicer4J as a part of

their dynamic analysis systems in a wide variety of projects, such

as fault localization [6], regression analysis [21], and malware de-

tection [15]. Software developers can also utilize Slicer4J for fault

localization, e.g., to narrow down the scope of statements to inspect

given failed test assertions or crash sites.

2 DYNAMIC SLICING

We now define slicing for Java programs on an example in Figure 1.

This program calculates the lengths of two arrays, given as the

program command line arguments. Its main method defines and

spawns two threads of type PThread, which will read and parse the

first and the second argument, respectively (lines 2-6). The parsed

arrays are stored in the arr field of PThread (line 13). After the

threads terminate (the check is omitted in line 7), the main method

reads, sums up, and outputs the length of these arrays (lines 8-9).

Each thread is initialized with the array of input arguments args

and an index within this array index (lines 15-16). When the thread

starts executing, it checks if the index is within the range of the

input parameters and, if so, populates the array using a helper

function parse, which we omit here for brevity (lines 19-20).

1570

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://github.com/resess/Slicer4J
https://doi.org/10.1145/3468264.3473123
https://doi.org/10.1145/3468264.3473123

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Khaled Ahmed, Mieszko Lis, and Julia Rubin

1 public class SliceMe {

2 public static void main(String[] args) {

3 PThread p1 = new PThread(args, 0);

4 PThread p2 = new PThread(args, 1);

5 new Thread(p1).start();

6 new Thread(p2).start();

7 ...

8 int length = p1.arr.length + p2.arr.length;

9 System.out.println(length);

10 }}

11 class PThread implements Runnable {

12 String[] args; int index;

13 int[] arr = null;

14 PThread(String[] args, int index){

15 this.args = args;

16 this.index = index;

17 }

18 void run() {

19 if (index < args.length){

20 this.arr = parse(args[index]);

21 }}}

Figure 1: SliceMe: a faulty app.

The bug in this program occurs when one or both input parame-

ters are omitted. For example, if the second parameter is omitted,

p2.arr is not initialized, leading to an exception when calculating

p2.arr.length in line 8. Slicing from the statement in line 8 pro-

duces the subset of executed program statements which contribute

to the failure. These are the statements highlighted in the figure.

We define the slice more formally next.

For simplicity of presentation, we refer to a statement in line 𝑖 of

our examples as 𝑠𝑖 , e.g., the if statement in line 19 is denoted by 𝑠19.

When a program runs, each statement can be triggered multiple

times during the execution, e.g., in multiple iterations of a loop

or in different instances of a thread. We refer to each individual

execution of a statement as a statement instance and denote the 𝑘 th

execution of a statement 𝑠𝑖 as 𝑠
𝑘
𝑖
. For example, assuming that p1

is executed before p2, the trace will contain statement instances

𝑠
1
3
, 𝑠1
13
, 𝑠1
15
, 𝑠1
16
, 𝑠1
4
, 𝑠2
13
, 𝑠2
15
, 𝑠2
16
, 𝑠1
5
, 𝑠1
6
, 𝑠1
19
, 𝑠1
20
, 𝑠2
19
, 𝑠1
8
. We refer to the

full sequence of statement instances from a particular app run as

an execution trace.

Dynamic control-flow dependencies represent a concrete trans-

fer of control recorded during the program execution. We say that

a statement instance 𝑠𝑚
𝑗

is control-flow-dependent on 𝑠
𝑘
𝑖
if 𝑠𝑚

𝑗
is

executed immediately after 𝑠𝑘
𝑖
in the same execution thread [5]. For

the example in Figure 1, 𝑠1
16

is control-flow-dependent on 𝑠
1
15
.

A sequence of statement instances with no jump statement (i.e.,

conditional or method call), except at the end of the sequence, is

referred to as a basic block. For example, 𝑠1
15

and 𝑠1
16

are in the same

basic block, while 𝑠1
19

and 𝑠1
20

are not.

A statement instance 𝑠𝑚
𝑗
is control-dependent on 𝑠𝑘

𝑖
if 𝑠𝑘

𝑖
can alter

the program’s control and it determines whether 𝑠𝑚
𝑗
executes [9].

In Figure 1, 𝑠1
20

is control-dependent on 𝑠
1
19
, as the outcome of the

if determines whether the control reaches 𝑠1
20

or not.

A statement instance 𝑠𝑚
𝑗

is a data-flow-dependent on 𝑠
𝑘
𝑖
w.r.t.

the variable 𝑣 used in 𝑠
𝑚
𝑗
if and only if 𝑠𝑘

𝑖
defines 𝑣 and no other

statement redefines 𝑣 between 𝑠𝑘
𝑖
and 𝑠𝑚

𝑗
in the trace [1]. In Figure 1,

𝑠
1
8
is data-flow-dependent on 𝑠

1
20

w.r.t. p1.arr, as the statement in

line 20 defines the p1.arr variable used in line 8.

A slicing criterion for an execution trace is a statement instance

and all variables of interest used in this statement instance [14]. For

Trace

▷ Slicing Criterion

Instru-

mentation

▷ JAR

Trace

Parsing

TDCG

Instrumented JAR

Slice

User-defined

summaries
▷ Test

1

Dynamic

Slicing

Framework

Modeling
2 3

▷

Figure 2: Slicer4J overview.

the example in Figure 1, the app throws a NullPointerException

in line 8, making line 8 with all variables that it uses ś p1.arr and

p2.arr ś a suitable slicing criterion for the developer interested in

finding the cause of the crash.

A backward dynamic slice [14] is the set of all statement instances

whose execution affects the slicing criterion, i.e., the set of instances

on which the slicing criterion is control- or data-flow-dependent,

either directly or transitively. For the example in Figure 1, the

backward slice from 𝑠
1
8
w.r.t. variable p1.arr consist of 𝑠1

8
, 𝑠1

20
, 𝑠1

19
,

𝑠
1
16
, 𝑠1

15
, and 𝑠1

3
. The backward slice from 𝑠

1
8
w.r.t. variable p2.arr

consist of 𝑠1
8
and 𝑠2

13
. The source code lines corresponding to these

statement instances are highlighted in the figure.

3 SLICER4J DESIGN

We now describe the main design decisions behind Slicer4J. Fig-

ure 2 gives its high-level overview. Our tool receives the following

inputs: (1) a Java Archive (JAR) file of the program to slice, (2) a

slicing criterion, e.g., a statement that throws an exception, (3) a test

that triggers this criterion, and (4) an optional list of user-defined

method summaries, as described below. It produces as output a

backward dynamic slice for the provided slicing criterion.

Instrumentation. As the first step, Slicer4J runs a lightweight

static analysis to instrument the JAR. Our instrumentation relies

on Soot [18] and works on the Jimple intermediate code represen-

tation [19]. It records a unique identifier of each execution thread

(using Thread.getId()) and for each statement within the thread.

Slicer4J also includes an option to perform basic-block-level in-

strumentation, which records a unique identifier of each basic block

rather than each statement within the thread [13]. Such implemen-

tation relies on the assumption that control is unlikely to switch

from one thread to another within a basic block; it thus should not

be used in heavily multi-threaded code.

While every local variables can be uniquely identified within its

declaring method, shared variables (e.g., object fields) may have

different names in the same/different methods. We thus follow

Agrawal et al. [1] and record unique identifiers for fields (with

java. lang.System.identityHashCode method), which we use

to identify fields when calculating data-flow dependencies.

As Java framework code is not part of the input JAR, it cannot be

instrumented by Slicer4J. To still enable slicing through framework

methods, Slicer4J relies on statically-generated Java framework

method summaries, which we borrow from FlowDroid [8] and Stub-

Droid [7]. These summaries, originally designed for taint analysis,

define how a taint originates from each method input (i.e., fields

and parameters) and propagates to its output (i.e., fields, param-

eters, and return value). We recast the taint-flow summaries as

assignment statements, which our analysis uses to find data-flows.

1571

Slicer4J: A Dynamic Slicer for Java ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

For example, the StubDroid summary for themethod java.lang.

System.arraycopy(a,srcPos,b,...) will state that a taint from

the first array reaches the second array b.We use this information to

represent a method as an assignment b = a, expressing the fact that

the values of the first array are copied to the second array (directly

or indirectly). Slicer4J also provides the option to augment this

initial framework method summaries with a user-defined list of

additional summaries, e.g., to model user-defined native methods.

An alternative solution, employed by JavaSlicer, is to instrument

Java classes when they are loaded by the Java Virtual Machine

(JVM). The main advantage of this solution is that it can handle

framework methods and dynamically generated code. Its main

disadvantage is that it cannot handle Java methods used as part of

its instrumentation logic, e.g., java.lang.String: instrumenting

these classes would cause an infinite loop when producing the trace.

Moreover, such instrumentation has to be repeated every time a

trace is generated, which slows things down when a program needs

to be sliced multiple times and for different slicing criteria. Because

of these limitations, we opt to statically instrument JARs and model

framework/native methods.We plan to add handling of dynamically

generated code as part of future work.

Trace Parsing. The instrumented JAR is executed (from command

line or with a test script) to produce a trace. Slicer4J parses the trace

and builds a Thread-aware, Inter-procedural Dynamic Control-flow

Graph (TDCG), whose nodes are statement instances of each ex-

ecuted basic block. The graph has three types of unidirectional

edges. Control-flow edges connect statement instances with the

same thread, in their order of execution. Thread-control-flow edges

connect statement instances from different threads, if they were

executed immediately after each other in the trace. Finally, control-

dependence edges connect statement instance 𝑠𝑚
𝑗
to the instance 𝑠𝑘

𝑖

iff 𝑠
𝑘
𝑖
can alter the execution of 𝑠𝑚

𝑗
. We rely on a static control de-

pendency graph produced by Soot and create a control-dependence

edge between 𝑠
𝑚
𝑗

and 𝑠
𝑘
𝑖
iff 𝑠 𝑗 is control-dependent on 𝑠𝑖 in the

static control dependency graph.

As the last step, we replace each statement instance that invokes

a framework method (or any other method in the user defined list

of methods summaries) with its corresponding summary, which

we treat as a set of assignments for slicing purposes.

Dynamic Slicing. The TDCG is given as the input to the dynamic

slicing step. We follow the backward slicing algorithm by Agrawal

et al. [1]. The main objective of the algorithm is to identify control

and data-flow dependencies of all variables used in the slicing

criterion. In a nutshell, it works in an iterative manner, initializing

the working set𝑊 to include variables used in the slicing criterion.

It then transitively adds all variables used in their control and data

dependencies to𝑊 . The algorithm terminates when dependencies

of all variables in𝑊 are identified.

For identifying the control dependency of a statement instance,

we simply follow the control-dependence edges in TDCG. For data-

flow dependencies, we separate between local and shared variables

(i.e., object fields). The scope of local variables is within a single

method/thread. Thus, to identify the definition of a local variable,

we simply traverse control-flow edges until the definition of a

variable with the same name is found. Shared variables can be read/

written in different threads. We thus traverse both control-flow and

thread-control-flow edges, to find the definition of a variable with

the same memory address; when a statement instance has outgoing

edges of both kinds, a thread-control-flow edge takes preference

over control-flow edges, to accurately represent the sequence of

statement execution in the trace. For completeness, we add the

identified data-flow-dependency edges to TDCG.

Outputs. At the end of this process, Slicer4J maps each state-

ment instance in the produced slice back to its corresponding line

of source code and outputs the list of source code lines. It also

outputs the raw slice representation, where each line corresponds

SliceMe:3 1 p1 = new Thread

SliceMe:3 1 p1.<init>(args, 0)

SliceMe:15 2 this.args = args

SliceMe:16 2 this.index = index
. . .

Figure 3: Slice snippet

to a statement instance and

has three fields: the name of

the source file and the line

number within the file for the

statement instance; the thread

of the instance; and the state-

ment instance itself, in Jimple format (see Figure 3). Finally, Slicer4J

also makes TDCG available for further inspection of the relevant

control and data-flow dependencies.

Slicer4J is launched from the command line and provides several

slicing options and configuration parameters, which are described

in our tool package [4]. Information about hardware and software

specification is also available online.

4 EVALUATION

We demonstrate the applicability of Slicer4J by running it on a

number of subject applications.

Benchmark Programs. First, we borrowed three benchmark ap-

plications created by the JavaSlicer authors to evaluate their tool.

These applications check the ability of a slicing solution to handle

data-flows within a method (intra-procedural), data-flows across

methods (inter-procedural), and control-dependence of exception

blocks on the statements that throw exceptions.

We created four additional benchmark applications to verify

capabilities introduced in Slicer4J and not supported by JavaSlicer:

tracking data flows through multiple threads; Java 9 constructs,

e.g., lambda expressions; native methods; and framework methods

used by the JavaSlicer instrumentation. The list of the benchmarks,

together with the size of each benchmark in terms of source lines

of code (LoC), is given in the first two columns of Table 1. The

benchmarks are small, ranging from 9 to 44 LoC.

As slices produced by JavaSlicer are at the Java bytecode level and

contain both the program and framework code, for fair comparison

between the tools, we map both slices to the source-code level

and disregard statements within the Java framework code. The last

three columns of Table 1 show the size of the expected slice, as well

as the size of slices produced by JavaSlicer and Slicer4J.

The table shows that both tools produce the expected slice for

the three JavaSlicer benchmarks, but JavaSlicer fails to produce

the expected slice on the last four cases handled by Slicer4J due

to its limitations outlined in Section 1. While Slicer4J finds the

correct slice in all cases, it has an extra statement in the slice of the

Native methods and Instrumentation classes benchmarks. In both

cases, this is caused by an overapproximation in the framework

method modeling: as this model is created by static analysis of the

framework methods, it assumes that all possible execution paths

1572

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Khaled Ahmed, Mieszko Lis, and Julia Rubin

Table 1: Accuracy: Benchmarks.

Benchmark Slice size (LoC)

Name LoC exp. JavaSlicer Slicer4J

Intra-procedural 9 5 5 5

Inter-procedural 12 5 5 5

Exceptions 30 8 8 8

Multiple threads 44 4 3 4

Native methods 10 5 2 6

Java 9 constructs 17 5 2 5

Instrumentation classes 12 4 2 5

within the framework may be taken at runtime, which is not the

case for concrete executions.

Defects4J Programs. To further demonstrate the applicability of

Slicer4J and compare it with JavaSlicer on bigger examples, we

selected the top three open-source projects from the Defects4J

dataset [12], ordering the projects in this dataset by the number

of project usages on GitHub. The list of selected projects, together

with their size, is shown in the first two columns of Table 2.

Each project in the Defects4J dataset contains a list of bugs, a

test case that triggers each of these bugs, and an annotated fix for

each bug. We examined the bugs one-by-one, selecting the first bug

on the list where at least one buggy line is executed in the trace,

i.e., where fixes involve modifying or replacing a line of code. We

then used the failing test assertion statement as a slicing criterion

and checked whether the buggy lines indeed appears in the slice

produced by both Slicer4J and JavaSlicer. The number of buggy

lines in the trace per project is shown in the third column of Table 2.

The size of the execution trace for the test triggering the bug is in

the fourth column, while the time to produce the trace, in seconds

(without any instrumentation) is in the fifth column.

Next, we show the number of buggy lines found by each tool and

the size of the slice that each tool produces. While in all three cases

both JavaSlicer and Slicer4J found the expected buggy lines (these

are older programs, which are written in Java 6 and contain no

threads), the slices produced by Slicer4J are substantially smaller

in the first two cases. That is mostly because of the extra unneces-

sary data-flow dependencies that JavaSlicer adds due to inaccurate

modeling of bytecode instructions. For example, when looking for

data-flow dependencies of y.f in the code y.f = x, the variable x

should be added to the working set𝑊 . Yet, JavaSlicer adds y to𝑊

as well (and further collects all it transitive dependencies).

For the last subject, JavaSlicer and Slicer4J have identical slices

besides one statement missing for JavaSlicer. This statement is

a definition of a static field inside a static constructor, which is

correctly identified by Slicer4J. JavaSlicer does not handle static

fields in static constructors correctly, which we confirm with a

mini-benchmark that we made available online [4].

Finally, we measured instrumentation (Inst.), execution (Exec.),

and slicing times for Slicer4J for each subject. Unlike Slicer4J,

which instruments the JAR file, JavaSlicer attaches to the JVM and

instruments each class as it is loaded. We thus measure Inst.+Exec.

and slicing times for JavaSlicer for each subject. All measured times,

for both of the tools are shown in Table 2.

The combined instrumentation and execution time for Slicer4J

is lower than that of JavaSlicer in the last two subject programs

but is higher in the first one. This program is relatively large (more

than 46,000 LoC) but the execution trace is small (only 3,927 lines),

meaning that only a small portion of the program is executed. As

JavaSlicer instruments on-demand, it saves a substantial portion of

instrumentation, leading to a better performance in this case.

For the other two cases, the trace is substantially larger than the

code size. In such cases, execution time łdominatesž the instrumen-

tation time and thus the efficient instrumentation capabilities of

Slicer4J help to bring the overall processing time down. We also

do not slow down framework code by instrumenting it.

The higher slicing time of Slicer4J is the cost of the Slicer4J abil-

ity to handle data-flows across threads. Unlike JavaSlicer, Slicer4J

processes the entire trace to untangle threads and create the TDCG,

which is used for more accurate slicing. The overall slicing time for

Slicer4J is less than five minutes, which we still find acceptable.

Limitations. Slicer4J is unable to slice classes that are dynamically

generated at runtime. We plan to address this limitation by adding

a JVM instrumentation component that instruments such classes

on-demand. Moreover, Slicer4J’s slicing time can be reduced by

generating TDCG on-demand instead of pre-processing the entire

trace before slicing starts. Slicer4J can map the Jimple slice to the

source code only if the JAR file is compiled with debug information

(preserving line numbers); otherwise, Slicer4J outputs the slice in

the raw Jimple format. The interleaved writes to the same trace by

multiple threads reduce parallelism as threads have to synchronize

when writing to the trace, which can slow applications down. This

synchronization can also łhidež concurrency bugs that occurred in

the uninstrumented version of the program. Finally, Slicer4J relies

on Soot to instrument the program and thus is limited to the Java 9

constructs supported by Soot.

5 CONCLUSIONS

This paper presents Slicer4J ś an accurate and efficient tool for dy-

namic slicing of Java 9 programs. Slicer4J uses low-overhead instru-

mentation to collect a runtime execution trace. It then constructs

a thread-aware, inter-procedural dynamic control-flow graph and

uses the graph to compute the slice, while relying on pre-defined

data-flow summaries of the main framework methods. We demon-

strate the applicability of Slicer4J on ten benchmark and open-

source Java programs, comparing it with JavaSlicer ś the only other

openly available slicing solution for Java 6 programs.

Table 2: Defects4J Programs.

Project JavaSlicer Slicer4J

Name: Bug ID LoC
Buggy

lines

Trace

(LoC)

Exec.

time (s)

Buggy

lines

Slice

(LoC)

Time (s) # Buggy

lines

Slice

(LoC)

Time (s)

Inst. + Exec. Slicing Inst. Exec. Slicing

JacksonDatabind:3 46,091 1 3,927 0.27 1 367 18.6 3.7 1 58 35.4 0.3 19.2

Gson:4 7,639 2 580,143 0.21 2 311 29.4 42.2 2 13 7.1 3.2 257.5

JacksonCore:4 15,667 1 809,814 0.21 1 32 16.8 38.7 1 33 9.6 3.4 129.3

1573

Slicer4J: A Dynamic Slicer for Java ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

REFERENCES
[1] Hiralal Agrawal, Richard A. DeMillo, and Eugene H. Spafford. 1991. Dynamic

Slicing in the Presence of Unconstrained Pointers. In Proc. of the Symposium
on Testing, Analysis, and Verification (TAV). 60ś73. https://doi.org/10.1145/
120807.120813

[2] Hiralal Agrawal and Joseph R. Horgan. 1990. Dynamic Program Slicing. ACM
SIGPLAN Notices 25, 6 (1990), 246ś256. https://doi.org/10.1145/93542.93576

[3] Khaled Ahmed, Mieszko Lis, and Julia Rubin. 2021. Mandoline: Dynamic Slicing of
Android Applicationswith Trace-Based Alias Analysis. In Proc. of the International
Conference on Software Testing, Verification and Validation (ICST). 105ś115. https:
//doi.org/10.1109/ICST49551.2021.00022

[4] Khaled Ahmed, Mieszko Lis, and Julia Rubin. 2021. Slicer4J. https://github.com/
resess/Slicer4J

[5] Frances E. Allen. 1970. Control Flow Analysis. ACM SIGPLAN Notices 5, 7 (1970),
1ś19. https://doi.org/10.1145/800028.808479

[6] Elton Alves, Milos Gligoric, Vilas Jagannath, and Marcelo d’Amorim. 2011. Fault-
Localization Using Dynamic Slicing and Change Impact Analysis. In Proc. of
the International Conference on Automated Software Engineering (ASE). 520ś523.
https://doi.org/10.1109/ASE.2011.6100114

[7] Steven Arzt and Eric Bodden. 2016. StubDroid: Automatic Inference of Precise
Data-flow Summaries for the Android Framework. In Proc. of the International
Conference on Software Engineering (ICSE). 725ś735. https://doi.org/10.1145/
2884781.2884816

[8] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
FlowDroid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware
Taint Analysis for Android Apps. In Proc. of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). 259ś269. https:
//doi.org/10.1145/2666356.2594299

[9] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. 1987. The Program
Dependence Graph and Its Use in Optimization. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 9, 3 (1987), 319ś349. https:
//doi.org/10.1145/24039.24041

[10] Clemens Hammacher. 2008. Design and Implementation of an Efficient Dynamic
Slicer for Java. Bachelor’s Thesis.

[11] Clemens Hammacher, Kevin Streit, Sebastian Hack, and Andreas Zeller. 2009.
Profiling Java Programs for Parallelism. In Proc. of the ICSE Workshop on

Multicore Software Engineering (IWMSE). 49ś55. https://doi.org/10.1109/
IWMSE.2009.5071383

[12] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database of
Existing Faults to Enable Controlled Testing Studies for Java Programs. In Proc.
of the International Symposium on Software Testing and Analysis (ISSTA). 437ś440.
https://doi.org/10.1145/2610384.2628055

[13] Mariam Kamkar, Nahid Shahmehri, and Peter Fritzson. 1992. Interprocedu-
ral Dynamic Slicing. In Proc. of the International Symposium on Programming
Language Implementation and Logic Programming (PLILP). 370ś384. https:
//doi.org/10.1007/3-540-55844-6_148

[14] Bogdan Korel and Janusz Laski. 1988. Dynamic Program Slicing. Inform. Process.
Lett. 29, 3 (1988), 155ś163. https://doi.org/10.1016/0020-0190(88)90054-3

[15] Andrea Lanzi, Monirul I. Sharif, and Wenke Lee. 2009. K-Tracer: A System for
Extracting Kernel Malware Behavior. In Proc. of the Network and Distributed
System Security Symposium (NDSS). 1ś16.

[16] Xiangyu Li and Alessandro Orso. 2020. More Accurate Dynamic Slicing for
Better Supporting Software Debugging. In Proc. of the International Conference
on Software Testing, Validation and Verification (ICST). 28ś38. https://doi.org/
10.1109/ICST46399.2020.00014

[17] Xiaoguang Mao, Yan Lei, Ziying Dai, Yuhua Qi, and Chengsong Wang. 2014.
Slice-based Statistical Fault Localization. Journal of Systems and Software 89
(2014), 51ś62. https://doi.org/10.1016/j.jss.2013.08.031

[18] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 1999. Soot - a Java Bytecode Optimization Framework. In Proc.
of the Conference of the Centre for Advanced Studies on Collaborative Research
(CASCON). 1ś11.

[19] Raja Vallee-Rai and Laurie J Hendren. 1998. Jimple: Simplifying Java bytecode
for analyses and transformations. Sable Technical Report (1998).

[20] Tao Wang and Abhik Roychoudhury. 2004. Using Compressed Bytecode Traces
for Slicing Java Programs. In Proc. the International Conference on Software Engi-
neering (ICSE). 512ś521.

[21] Dasarath Weeratunge, Xiangyu Zhang, William N. Sumner, and Suresh Jagan-
nathan. 2010. Analyzing Concurrency Bugs Using Dual Slicing. In Proc. of
the International Symposium on Software Testing and Analysis (ISSTA). 253ś264.
https://doi.org/10.1145/1831708.1831740

[22] Mark Weiser. 1981. Program Slicing. In Proc. of the International Conference on
Software Engineering (ICSE). 439ś449.

1574

https://doi.org/10.1145/120807.120813
https://doi.org/10.1145/120807.120813
https://doi.org/10.1145/93542.93576
https://doi.org/10.1109/ICST49551.2021.00022
https://doi.org/10.1109/ICST49551.2021.00022
https://github.com/resess/Slicer4J
https://github.com/resess/Slicer4J
https://doi.org/10.1145/800028.808479
https://doi.org/10.1109/ASE.2011.6100114
https://doi.org/10.1145/2884781.2884816
https://doi.org/10.1145/2884781.2884816
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/24039.24041
https://doi.org/10.1109/IWMSE.2009.5071383
https://doi.org/10.1109/IWMSE.2009.5071383
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1007/3-540-55844-6_148
https://doi.org/10.1007/3-540-55844-6_148
https://doi.org/10.1016/0020-0190(88)90054-3
https://doi.org/10.1109/ICST46399.2020.00014
https://doi.org/10.1109/ICST46399.2020.00014
https://doi.org/10.1016/j.jss.2013.08.031
https://doi.org/10.1145/1831708.1831740

	Abstract
	1 Introduction
	2 Dynamic Slicing
	3 Slicer4J Design
	4 Evaluation
	5 Conclusions
	References

