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Abstract—As computing systems scale their memory systems
continue to be limited by latency and bandwidth. Data prefetch-
ing is an efficient technique that can be used to efficiently utilize
the memory bandwidth while mitigating memory latency. While
modern data prefetchers can efficiently predict regular access
patterns, they are inefficient in predicting complex access patterns
that span across page boundaries. This paper proposes an ML-
based LLC data prefetcher called Multi-Page Multi-Layer Per-
ceptron prefetcher (MPMLP). The MPMLP prefetcher contains
two sub-prefetchers; namely a traditional Best-Offset Prefetcher
and an MLP-based prefetcher. The MPMLP prefetcher is geared
to predict regular and complex patterns across page boundaries.
For benchmarks that the Best-Offset Prefetcher does not perform
well, the MPMLP prefetcher tries to learn the data access pattern
at LLC using a Multi Layer Perceptron (MLP). Overall, the
MPMLP prefetcher provides a speedup of 32% as compared to
a baseline that does not employ prefetching.

I. Introduction
The advent of multicores and accelerators have been in-

strumental in scaling compute throughput in modern Von-
Neumann machines. However, their memory latency and band-
width have not scaled proportionately. To overcome this hur-
dle, data prefetching is seen as an efficient technique to utilize
the available memory bandwidth and reduce or eliminate
memory access latencies. The goal of the prefetcher is to
accurately bring-in useful data blocks in a timely manner
when the memory bandwidth is unused [14]. However, as
workloads evolve, their sequence of memory accesses have
become complex and prefetching useful data blocks has be-
come increasingly difficult [3]. To overcome this concern, this
paper proposes a machine-learning (ML) based hardware data
prefetcher for the Last Level Cache (LLC).

This paper observes that traditional prefetchers, such as the
Best-Offset prefetcher, are efficient in prefetching data blocks
that are a part of a dominant access pattern. However, modern
workloads also exhibit hard-to-predict (complex) access pat-
terns that could span across multiple physical pages. Further-
more, as modern operating systems can randomize the physical
page locations for contiguous virtual pages, prefetching these
data blocks is challenging. Therefore, this paper uses a hybrid
approach to data prefetching.

Our hybrid data prefetcher, called as the Multi-Page Multi-
Layer Perceptron Prefetcher (MPMLP), is made up of two
sub-prefetchers; namely a multi-layer perceptron-based sub-
prefetcher and the Best-Offset (BO) sub-prefetcher [4, 7]. The
sub-prefetchers are designed to share the prefetching budget.
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Furthermore, the MPMLP prefetcher is equipped to issue
prefetch requests to data blocks that are outside physical
page boundaries. To enable this, MPMLP maintains a page
transition table that keeps a record of the most recent page
transitions for predicting the address of the next physical
page. Our analysis shows that, on average, the MPMLP
prefetcher outperforms the no-prefetcher baseline by 32%
across SPEC2006, SPEC2017, and GAP benchmarks.

A. Motivation
Traditional prefetchers are typically designed to prefetch

commonly occurring access patterns. For example, state-of-
the-art prefetching techniques like the VLDP [12], Sand-
box [10], Bouquet of Instruction Pointers [8], and the Best
Offset (BO) prefetchers [7] predict offsets from the current
access. The BO prefetcher exploits the idea that a given
program phase will have some dominant (i.e., most commonly
occurring) offset(s) between consecutive memory addresses.

However, when the workload lacks a dominant offset, an
offset-dependent prefetcher like the BO prefetcher does not im-
prove performance. For example, in the Single-Source Shortest
Path (SSSP) algorithm, whenever a node S is processed, the
metadata of all of its neighbours are processed one after
another, and the neighbours of each node S are traversed
several times as the algorithm is iterative. Since each node
is connected to some other nodes with irregular indices,
its neighbours are not stored with a dominant offset in the
memory. The sequence of accesses to process a node S in
SSS algorithm is shown in Fig. 1, where the x-axis refers
to the offset at which the nodes are stored. As shown in the
picture, each of the accesses happens in an unintuitive offset
that cannot be captured by a BO prefetcher.

Fig. 1. Memory accesses to process the node S of a graph according to the
Single-Source Shortest Path (SSSP) algorithm.

Prefetchers can also be designed to not rely on detecting
and replicating offsets. For example, Markov prefetchers and
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Dependence Prefetchers [6, 11] can be used to capture the
complex node traversal patterns in the SSSP application.
However, these prefetchers would require a large amount of
storage to store the state information such as path confidence
and produce-consumer pairs respectively.

Fig. 2. Number of accesses it takes to get to the same page. This value for
many of the benchmarks is >1; implying that there are several transitions
to other pages before referencing a data block in the same page. This helps
motivate the need to prefetch across pages.

Furthermore, complex data access patterns can span across
pages. For instance in the benchmark SSSP, as shown Fig. 1,
when accessing the node S itself and its neighbours’ metadata,
four different pages has been accessed. As shown in Fig. 2,
in several benchmarks transitions between pages happen quite
frequently as the number of memory accesses into different
pages while accessing subsequent lines in a page is >1.

Prefetching data blocks is further complicated by the fact
that, after virtual to physical address translation, the operating
system (OS) may assign contiguous virtual pages into seem-
ingly random physical pages. Therefore, one of the major chal-
lenges is handling prefetch requests that span across physical
page boundaries. As the next data address can be from any
seemingly random physical page, it is difficult for a traditional
prefetcher to predict what makes the upper bits of the next
address (the physical page number).

In contrast to the conventional prefetchers, a well-trained
ML-based prefetcher does not need as much guidance or stor-
age overheads for identifying pattern(s) that can be exploited
within the target program. This is because machine learning
models are capable of finding statistical trends that aid the
minimization of a loss function supplied to the model. An
example of these statistical trends is the repetitive traversal of
the same neighbours (see Fig. 1). Importantly, neural networks
can learn non-linear relationships between their inputs and
the loss function and deep networks will form a hierarchical
representation of knowledge between layers of the network.
As a result, unlike traditional prefetchers, a neural network

prefetcher is capable of memorizing numerous frequent data
access patterns in a space efficient manner and does not need
to maintain a large amount of information state [6]. For this
reason, the proposed MPMLP prefetcher opts to use a multi-
layer perceptron as its ML-based prefetcher.

However, data access patterns that tend to be recurring,
the virtual to physical page mappings can be completely
random. Due to this random nature of page mapping, the
physical page address that is addressed after the current page
cannot be predicted using an ML based approach. Therefore,
to enable prefetching across page boundaries, the MPMLP
prefetcher must be designed with a tracking table to help
predict subsequent physical page addresses.

II. Prefetcher Design

As we designed the prefetcher for the ML-Based Data
Prefetching Competition [2], our design is constrained by the
requirements of this competition. We focused on the following
shortcomings of existing prefetchers:

• They are unable to exploit complex frequent patterns. To
address these patterns we use MLP.

• The next address to prefetch may happen in the next
virtual page, with an unknown physical address. To solve
this we propose use of a page transition table (PTT).

• Many applications have simple behaviours with dominant
address offsets which our MLP model is not capable of
fully and quickly capturing those offsets. To exploit these
patterns as well, we complement our prefetcher with a
Best Offset prefetcher [7].

As the competition environment does not provide the data
prefetcher any access to the OS page management mecha-
nisms, we also need a hardware-only mechanism to predict
physical pages that exhibit temporal locality. We treat this
prediction task as orthogonal to the underlying task of data
prefetching, i.e., separate the task of predicting the cache set
index from the task of predicting the next physical page to
be accessed. To predict page numbers, we supplement the
MPMLP prefetcher with a page transition table that records
the last page transition at a page boundary for each Instruction
Pointer (IP), and use this information for predicting the next
page when a page transition is predicted.

Applications tend to have varied memory access behaviours.
For instance, some applications tend to have highly irregular
memory accesses while other applications may follow a rel-
atively regular access pattern. In case of irregular memory
accesses, a prefetcher such as the BO prefetcher that relies on
the continuation of phase-based patterns may perform poorly.
However, in such a scenario, a multi-layer perceptron (MLP)
based prefetcher may be better suited to finding unintuitive
patterns despite access irregularity. In case of regular memory
accesses, a phase-based BO prefetcher may be highly effective
while a MLP-based prefetcher is unnecessarily difficult to
train. This leads us to attempt using our MPMLP model in
tandem with an auxilary BO model.
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A. Overview
Fig. 3 shows the components of the proposed prefetcher.

The three major components are: an MLP-based prefetcher ,
an auxilary BO prefetcher ® [7], and a page transition table
¯. Each time a memory access occurs, the MLP prefetcher 
and the BO prefetcher ® issue one prefetch request each. The
MLP perfetcher receives its input from the Memory Access
History ¬ unit, which keeps track of a window of a limited
number of previous accesses of each IP. It then predicts an
offset within a page, and whether the access would be in the
current page or another page. If it predicts that another page is
going to be accessed, the address of the next page is predicted
according to the page transition table ¯. Finally, the physical
address is obtained by concatenating the page address, which
is either equal to the current page or the page read from PTT,
and offset within the page. The next two subsections describe
the details of the MLP model and the page transition table.

Fig. 3. The overview of the MPMLP prefetcher. The MPMLP prefetcher
consists of 3 primary components. First, an MLP-based Prefetcher. Second,
the Best-Offset Prefetcher. Third, a Page Transistion Table for tracking physical
pages with temporal locality.

B. Multi-Layer Perceptron Prefetcher
We formulate the prediction task as a multi-class classi-

fication problem [5]. The prefetching problem is formulated
as a prediction of the index of cache lines within a page to
be accessed in the future by a given instruction pointer (IP).
This is based on the insight that, rather than as a direct data
address prediction based on the raw LLC access stream, the
IP helps differentiate between parts of code that may have
different prefetch characteristics for the same data address. The
structure of the MLP prefetcher is shown in Fig. 4.

When a memory access is encountered, the set indices of
the last ℎ memory accesses for this IP (including the current
one) are encoded as one-hot vectors, and the vectors are or’d
together (i.e., an embedding bag). For a cache with 𝑠 sets,

Fig. 4. The structure of the MLP sub-prefetcher. The MLP sub-prefetcher
consists of input layer, 2 hidden layers, and output layer.

Fig. 5. The window of accesses considered for training. On the left you see
the ℎ accesses used as history, i.e. input to the model. On the middle you see
the 𝑙 skipped accesses to reach some timely target accesses. On the right the
𝑘 target accesses are shown.

each vector has 2𝑠 elements: the first 𝑠 elements correspond
to accesses on the same page, and the second 𝑠 elements to
accesses on any other page. (In the configuration we evaluate,
ℎ = 4 and 𝑠 = 64.)

Unlike [5], which tries to include the most frequently parts
of the address space into the output space, the output space of
our prefetcher only contains two pages, which are the current
page and the next page. Thus, the output of our model is also
a 128-element, as shown in Fig. 4. Each element is between
0.0 and 1.0, representing the likelihood that the corresponding
cache line will be accessed in the future. The 𝑑 most likelihood
cache lines are selected to be prefetches.

Our training labels are also binary vectors of 128 elements.
To obtain the output label, a window of 𝑘 future are repre-
sented as binary vectors of 128 elements with the same method
as representing the window of past accesses to obtain the
input to the network. Then, these 𝑘 vectors are or’d together,
similar to the way the input vector is obtained. Optimization
uses a binary cross entropy loss function. In the competition
framework, the training is done offline on some 𝑁 instructions
(100 million in our evaluations) instructions, and evaluation is
done on the next 𝑁 instructions of a given application trace.

One of the major concerns for prefetching is the timeliness
of the prefetch requests. If we prefetch a cacheline too late
(i.e., too close to the point in time at which the corresponding
data is needed), then the prefetch request will not be useful
as the demand access to this address will occur before the
prefetch completes. This creates a need to predict far into the
future, rather than predicting the next few accesses. We choose
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to skip 𝑙 accesses (see Fig. 5) into the future per instruction
pointer and only look at the accesses that occur later than this
value for training our model. We use 𝑙 = 5 in the presented
evaluations.

Note that this model actually disregards sequencing informa-
tion: that is to say, the model does not know the order in which
the cache lines were accessed in the last ℎ accesses. While this
throws away some information and reduces the potential peak
performance of the model, for the investigated MLP variations,
we find that it also allows for effective training and the model
is still able to learn meaningful patterns in the LLC accesses of
many IPs. This formulation of the input is highly amenable to
the MLP’s ability to derive important information from subtle
statistical patterns.

C. Page Transition Table
In several applications, the same data structures tend to

be accessed repeatedly, and thus, the sequence of accessed
physical pages (albeit spread throughout the memory system)
are also likely to repeat. Thus, for any load instruction, the
most recent page to which a transition from the current page
has occurred is used as the prediction for the next page
accessed. This fact is also reflected in Fig. 2, which shows
that after transitioning from a certain page to another one,
in many cases that physical page is accessed again later. This
observation is used by the MPMLP prefetcher by keeping track
of these page transitions.

To keep track of the most recent page transitions, a page
transition table is maintained for each of the IPs. Every time
an IP accesses a physical page 𝑦 right after accessing physical
page 𝑥, the entry (𝑥, 𝑦) is written to the page transition table
corresponding to that IP. If there is already an entry with
source 𝑥, it is over-written, and otherwise, a new entry is
allocated in the table.

III. Methodology
We use PyTorch [9] to implement the MLP model. The

model has 3 fully connected linear layers. We apply Dropout
with rate 0.5 [13] for the last layer. The output of our MLP
model has 128 neurons. The first 64 neurons represent data
blocks in the current page whereas the other 64 neurons
represent data blocks from the next page. The input layer also
has the similar 128 neurons, with 64 neurons representing the
current page and the other 64 neurons representing a page
that was accessed before the current page (the ℎ last accesses
can come from multiple physical pages). The last layer has
a softmax activation and the other layers come with ReLU
activation. The intermediate layers of neurons have 376 and
400 neurons respectively.

As illustrated in Fig. 5 we have three windowing parameters,
ℎ, 𝑙, and 𝑘 . We empirically found the values ℎ = 4, 𝑙 = 5 and
𝑘 = 2 work best overall, and used them for all benchmarks.
Most importantly, a relatively short history makes the learning
process faster for the MLP prefetcher.

We use the the ChampSim [1] simulator to evaluate the
MPMLP prefetcher. The efficacy of the MPMLP prefetcher

is measured on SPEC2006, SPEC2017, and GAP bench-
mark traces that are provided by the Machine Learning Data
Prefetching Competition [2]. In this paper, we compare the
MPMLP prefetcher to a baseline system that does not employ
prefetching. In this work, we train the MLP model on the first
100 million instructions of each benchmark and evaluate the
IPC for the next 100 million instructions.

IV. Results

Fig. 6 shows the performance of three prefetchers for 40
random traces out of the 99 benchmarks provided by the data
prefetching competition. On average, the MLP-only prefetcher
can provides a speedup of 25% (geometric mean) over a
no-prefetcher baseline. The Hybrid MPMLP prefetcher can
increase this speedup to 32% taking advantage of both BO
prefetcher [7] and the MLP prefetcher.

The most benefits for the MPMLP prefetcher are for the
607.CactusBSSN benchmark. Both the MLP and MPMLP
models also outperform BO in sssp benchmarks. As in the
example from Section I, that is because the there is no
dominant offset in the memory accesses of this benchmark,
but the sequence of accesses are repeated several times, and
thus, MPMLP can recall the memory access patterns from
the training instructions. In addition, its page transitions are
repeated several times. Therefore, the PTT can predict the next
page that is going to be accessed, while the BO prefetcher only
prefetches within the same page.

In the 654.roms benchmark, the MPMLP model prefetcher
performs better than each of the BO and MLP prefetchers.
That is because in this benchmark, some IPs have regular
access while the others have regular access patterns. As a
result, a mixture of BO and MLP captures both regular and
irregular accesses, which results in a higher performance than
prefetchers that focus on only one those patterns.

When offsets are regular and predictable, however, the MLP
component offers no advantage over BO: for example, in
649.fotonik3d, BO-only performs better than MLP-only.

V. Conclusions

As memory bandwidth and latency becomes increasingly
important, data prefetching has become an important area
of research. To this end, this paper showcases the MPMLP
prefetcher that is hybrid prefetcher consisting of a Best Offset
Prefetcher and an MLP-based prefetcher. The Best-Offset
prefetcher is useful in prefetching regular accesses. On the
other hand, the MLP-based prefetcher is found to be useful to
prefetch irregular accessed. To improve performance further,
the MPMLP prefetcher is designed to prefetch across page
boundaries. This helps improve the timeliness of the MPMLP
prefetcher while also enabling a larger coverage. Overall,
across SPEC2006, SPEC2017, and GAP benchmarks, the
MPMLP provides a speedup of 32% (on average) as compared
to a no-prefetcher baseline.
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Fig. 6. Speedup over a no-prefetcher baseline for MLP prefetcher, Best Offset prefetcher and the Hybrid (MPMLP) prefetcher of the two. Overall, MPMLP
provides a speedup of 32% as compared to an MLP-only implementation that provides 25% speedup.
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