
Appears in the Proceedings of the 2021 IEEE International Conference on Software Testing, Verification, and Validation (ICST 2021)

MANDOLINE: Dynamic Slicing of Android
Applications with Trace-Based Alias Analysis

Khaled Ahmed
Univ. of British Columbia, Canada

khaledea@ece.ubc.ca

Mieszko Lis
Univ. of British Columbia, Canada

mieszko@ece.ubc.ca

Julia Rubin
Univ. of British Columbia, Canada

mjulia@ece.ubc.ca

Abstract—Dynamic program slicing is used in a variety of
tasks, including program debugging and security analysis. Build-
ing an efficient and effective dynamic slicing tool is a challenging
task, especially in an Android environment, where programs are
event-driven, asynchronous, and interleave code written by a
developer with the code of the underlying Android platform. The
user-facing nature of Android applications further complicates
matters as the slicing solution has to maintain a low overhead
to avoid substantial application slowdown.

In this paper, we propose an accurate and efficient dynamic
slicing technique for Android applications and implement it in
a tool named MANDOLINE. The core idea behind our technique
is to use minimal, low-overhead instrumentation followed by so-
phisticated, on-demand execution trace analysis for constructing
a dynamic slice. We also contribute a benchmark suite of Android
applications with manually constructed dynamic slices that use a
faulty line of code as a slicing criterion. We evaluate MANDOLINE
on that benchmark suite and show that it is substantially more
accurate and efficient than the state-of-the-art dynamic slicing
technique named ANDROIDSLICER.

I. INTRODUCTION

Program slicing [1] computes the set of statements that
affect a particular variable or statement of interest, often
referred to as a slicing criterion. Slicing techniques are used in
a variety of tasks, e.g., program debugging, to help locate the
origin of an error more easily. Slicing can be performed either
statically or dynamically [2]. While static slicing considers
all possible program paths leading to the slicing criterion,
dynamic slicing focuses on one concrete execution.

The main idea behind a dynamic slicing tool is to first
collect an execution trace of a program, i.e., the set of all exe-
cuted program statements, by instrumenting either the program
itself or its underlying runtime environment. Then, the tool
inspects control and data dependencies of the trace statements,
identifying statements that affect the slicing criterion and
omitting the rest. The produced dynamic slices are more
compact than static ones, making them particularly suitable
for debugging activities [3], [4].

Dynamic slicing techniques have been extensively studied
in the literature, mostly for traditional, desktop/server appli-
cations, e.g., [5], [6], [7], [8]. Slicing mobile programs (often
referred to as mobile apps) is a more challenging task. First, in
mobile systems, instrumentation typically targets the app itself
rather than the underlying mobile platform: the implementa-
tion of the platform changes rapidly, making modifications
obsolete within less than a year [9]. Producing app-level instru-

mentation is challenging because the instrumentation has to
balance low runtime overhead (mobile apps are user-facing and
mobile platforms simply kill slow apps [10]) with the ability to
collect sufficient information for performing accurate slicing.
Furthermore, mobile apps rely heavily on the code of the
underlying platform and thus a slicing solution has to consider
control and data flowing through the framework. Finally, it has
to consider numerous interleaved threads of the app, as mobile
apps are mostly asynchronous and event-driven.

In this paper, we focus on addressing these challenges,
contributing an efficient and effective solution for slicing
Android mobile apps. Android slicing was already attempted
before, in a tool called ANDROIDSLICER [11]. Yet, ANDROID-
SLICER makes several decisions that sacrifice accuracy for
low instrumentation overhead, e.g., it does not track data
propagation via fields of objects used in different methods.

Consider, for example, the Planner app in Figure 1, which
schedules calendar events for the user. The code of the app was
borrowed from the com.alexstyl.specialdates app in our
evaluation dataset and was simplified for illustration purposes.
For simplicity, we also discuss the example and the slicing
algorithm at the source-code level while our solution is able
to process apps and their third-party libraries at the byte-code
level, even when no source code is available.

In our example app, the method onCreateDialog() of the
PlanDialog class (lines 4-15) is called by the platform when
the user opens a dialog to pick a day for a recurrent event. This
method first creates an instance of the EditText UI widget,
where the user can enter the name of the event (line 5), and
an instance of the Picker widget, where the user can select
a day from a predefined range of numbers between 1 and
31 (lines 6-8). The method then associates the Picker object
with a listener, which will be triggered when the user picks
a day (lines 9-10). Finally, it creates the “Set” button and
associates it with another listener, which will be triggered
when the button is pressed (lines 11-14).

Both listeners are implemented as PlanDialog’s inner
classes (lines 16-24 and lines 25-40, respectively), following
the recommendation in the Android tutorial [12]. Such an
implementation provides both inner classes access to the fields
of its enclosing class, e.g., the field d in line 2. Within an inner
class, this field is accessed via PlanDialog.this.d expression
(lines 22 and 31). In our example, the constructors of the
inner classes (lines 18-20 and lines 27-29, respectively) are

1

Appears in the Proceedings of the 2021 IEEE International Conference on Software Testing, Verification, and Validation (ICST 2021)

1 class PlanDialog extends DialogFragment {
2 int d = 1;
3 EditText eventNameText;
4 void onCreateDialog() {
5 eventNameText = new EditText(...);
6 Picker picker = new Picker(...);
7 picker.setMinValue(1);
8 picker.setMaxValue(31);
9 PListener pListener = new PListener(this);

10 picker.setOnValueChangedListener(pListener);
11 Button button = new Button(...);
12 button.setText("Set");
13 CListener clistener = new CListener(this);
14 button.setListener(cListener);
15 }
16 class PListener extends OnValueChangeListener {
17 PlanDialog this$0;
18 PListener(PlanDialog planDialog){
19 this.this$0 = planDialog;
20 }
21 void onValueChange(Picker picker) {
22 PlanDialog.this.d = picker.getValue();
23 }
24 }
25 class CListener extends OnClickListener {
26 PlanDialog this$0;
27 CListener(PlanDialog planDialog){
28 this.this$0 = planDialog;
29 }
30 void onClick() {
31 int day = PlanDialog.this.d;
32 int year = Year.now().getValue();
33 int month = 0;
34 while (month < 12) {
35 Date date = new Date(day, month, year);
36 //... schedule the event in the calendar
37 month++;
38 }
39 }
40 }
41 } Figure 1: Planner: a faulty app.

generated by the compiler automatically and are not written
by the developer. We include the constructors in our example
for completeness of the representation.

When the user selects a day in the Picker widget, the on-
ValueChange(...) method of PListener is triggered (lines
21-23), storing the selected day in the PlanDialog’s field d
(line 22). Then, when the user presses the “Set” button, the
onClick() method of CListener is triggered (lines 30-39).
This method retrieves the day selected by the user from field d
(line 31), computes the current year (line 32), and iterates over
all months of the year, placing the event in the user calendar
for the selected date of each month (lines 33-37).

The app fails when the user selects a day that does not exist
in a particular month, e.g., 31 in February, which leads to the
IllegalFieldValueException exception when creating the
Date object in the second loop iteration (line 35). A slice from
the faulty line can help narrow down the program execution
only to code relevant for the failure, e.g., omitting the code
dealing with event name (lines 3 and 5) and its scheduling in
the calendar (line 36).

To accurately identify the relevant program slice for the
statement in line 35 as the slicing criteria, one needs to com-
pute the data dependencies of the variable day used in line 35.
This variable is defined as PlanDialog.this.d in line 31,
which, in fact, is aliasing the field d of the PlanDialog class.
However, the value of this field is not set in line 2 but rather in
line 22, by the onChangeValue(...) method of PListener.

Tracking such data dependencies dynamically requires an
accurate analysis of object references, to establish that Plan-
Dialog.this.d in both line 31 and 22 refer to the same object.
A straightforward solution to this problem is to collect, via app
instrumentation, memory addresses of all objects manipulated
by the app, making it possible to uniquely identify and match
variables referring to the same object [4], [13], [5], [14],
[8]. The main drawback of this solution is its high run-
time overhead because practically every line of code must be
instrumented in order to record addresses of all used objects.
We conjecture that for this reason, ANDROIDSLICER does not
track such dependencies and thus cannot build the complete
slice for the app in Figure 1, missing the assignment in line
22. Our work addresses this limitation, contributing a method
for identifying variables referencing the same object via alias
analysis [15], [16], [17], [18] conducted over the execution
trace of the app, after the app execution terminates. Our
method enables tracking data propagation via object fields
without increasing the instrumentation cost.

Moreover, continuing slicing from the statement in line 22
requires tracing field definitions and usages inside An-
droid framework methods, to establish that there is a
data dependency between the picker.getValue() and
picker.setMaxValue(31) statements in lines 22 and 8, re-
spectively. This is because picker.getValue() uses an inter-
nal array structure that holds all possible Picker values shown
to the user; it retrieves the selected value from that array while
picker.setMaxValue(31) sets the boundaries of this array.
Such dependencies implemented inside the framework pose
challenges to existing slicing solutions: ANDROIDSLICER
misses the statement in line 8, which, in fact, is the statement
that causes the crash. Inspired by existing approaches for
Android static analysis [19], our work addresses this limitation
by modeling data propagation inside the framework methods.
Specifically, our solution captures a set of defined and used
variables for each framework method and uses it to augment
“classical” data dependencies between Java statements.

We implement our proposed slicing approach in a tool
named MANDOLINE (as the cooking utensil used for slicing
vegetables rather than the musical instrument with a similar
name). To evaluate MANDOLINE and compare it with the
state-of-the-art Android slicing techniques, we built a bench-
mark suite containing 12 Android apps with known faults and
their corresponding dynamic slices. We borrowed the apps
from the existing benchmark suites containing faulty apps:
ReCDroid [20] and DroixBench [21]. Then, two members of
our research group independently analyzed each app, building
the expected slice manually and cross-validating each other’s
results to ensure correctness; the overall effort of building the
ground truth for slicing took more than 30 workdays. Using
the produced benchmarks, we evaluate MANDOLINE and com-
pared it with ANDROIDSLICER, showing that MANDOLINE
outperforms the state-of-the-art Android slicing techniques
w.r.t. both accuracy and runtime overhead due to its efficient
instrumentation, dynamic field analysis, and Android modeling
approaches. Our work is the first to assess the quality of the

2

Appears in the Proceedings of the 2021 IEEE International Conference on Software Testing, Verification, and Validation (ICST 2021)

produced Android slice against a fixed ground truth rather than
only calculating the code reduction rate achieved by slicing.

Contributions. The main contributions of the paper are: (1)
An efficient dynamic slicing approach, implemented in a tool
called MANDOLINE. Our approach does not require expensive
app instrumentation and relies on efficient field alias analysis,
modeling of Android framework methods, and modeling of
threads and asynchronous Android callbacks. (2) The first
benchmark suite containing manually produced slices for An-
droid applications. (3) An evaluation of MANDOLINE on the
proposed benchmark, which compares its accuracy and run-
time efficiency with the state-of-the-art approach in Android
slicing: ANDROIDSLICER. Our implementation of MANDO-
LINE and the experimental data is available online [22].

II. BACKGROUND AND NOTATIONS

We now introduce Android apps structure, notations used
in this paper, and define slicing for Java programs.

A. Application Structure

Unlike a desktop program, an Android app does not have
a single main method. Instead, an app defines multiple en-
try points, referred to as callbacks, which are triggered by
the Android platform to react to user-generated and sensor-
generated events, such as button clicks and location changes.
For example, the method onClick() in line 30 of Figure 1
is a callback triggered when the user clicks the “Set” button;
the callback is associated with the button in line 14, using the
setListener(...) method. Android callbacks whose timing
and order of execution is preset by the platform are called
lifecycle events. For example, the method onCreateDialog()
in line 4 of Figure 1 is a lifecycle event triggered by the
platform when initializing the dialog.

Android relies on Java multi-threading mechanisms and
extends them with additional, framework-specific mechanisms.
For example, the AsyncTask class provides the method doIn-
Background(...), which makes it possible to perform long-
lasting operations in a background thread. Apps can also start
asynchronous executions in response to a timer or to message
events triggered by the platform. For example, the Timer class
provides the method schedule(...), allowing the application
to schedule a thread to run at specific time intervals.

Finally, we refer to the APIs exposed to the application
by the underlying Android platform as framework methods.
For example, the methods setMinValue(...) and setMax-
Value(...) of the class Picker (lines 7-8 in Figure 1) allow
the developer to constraint the range of numbers presented to
the user by this widget.

B. Control and Data Dependencies

In static program analysis, each node of a Control-Flow
Graph (CFG) represents a statement; an edge between the
nodes represents a potential flow of control between these
statements [23]. For the example in Figure 1, the statement
in line 5 is control-flow dependent on the statement in line 4
as control flows from line 4 to 5. For simplicity, we refer to

the statement in line 8 of this example as B8 , i.e., saying that
B5 is control-flow dependent on B4.

In dynamic analysis, each statement of an app can be
triggered multiple times during the app execution, e.g., in
multiple iterations of a loop or in different instances of a
thread. We refer to each individual execution of a statement
as a statement instance and denote the 9 th execution of a
statement B8 as C

9

8
. We refer to the sequence of statement

instances executed in a particular app run as an execution trace.
As B35 was executed twice in the faulty scenario (for January
and February), it has two statement instances: C135 and C235.

Unlike static control-flow dependencies, dynamic control-
flow dependencies represent a concrete transfer of control
recorded during the app execution. We say that a statement
instance C<

:
is control-flow-dependent on C

9

8
in a Dynamic

Control-Flow Graph (DCFG) if C<
:

is executed immediately
after C 9

8
in the same execution thread and one of the following

holds: (i) both statements are in the same method and B: is
control-flow-dependent on B8 in a static control-flow graph or
(ii) the statements are in different methods and B8 triggers the
method whose first statement is B: .

A statement instance C<
:

is control-dependent on C 9
8

if and
only if B8 can alter the program’s control and it determines
whether B: executes [24]. Examples of statements that can
alter the control are if and while. In Figure 1, C235 is control-
dependent on C234, as B34 is a while condition whose outcome
affects whether the control reaches B35 or not.

We say that a statement instance C 9
8

is a dynamic reaching
definition of a variable E in C<

:
if and only if (a) C 9

8
is control-

flow-reachable from C<
:

, (b) there exist a variable E s.t. E is
used in B: and defined in B8 , and (c) there is no redefinition of E
along the control-flow edges between C 9

8
and C<

:
in the DCFG.

In that case, we also say that statement instance C<
:

is data-
flow-dependent on C 9

8
w.r.t. the variable E [4]. For example, the

dynamic reaching definition of the variable day in C235 is C131
and, thus, C235 is data-flow-dependent on C131 w.r.t. day.

C. Slicing

A slicing criterion for an execution trace is a tuple (2,+),
where 2 is a statement instance and + is a set of all variables of
interest used in this statement instance [2]. If + is omitted, it is
assumed to include all variables used by 2. For the example in
Figure 1, the app crashes with IllegalFieldValueException
in the second iteration of the loop in line 35, making C235
with all its used variables a suitable slicing criterion for the
developer interested in finding the cause of the crash.

A backward dynamic slice [2] is the set of statement
instances whose execution affects the slicing criterion, i.e., the
set instances on which the slicing criterion is control- or data-
flow-dependent, either directly or transitively. For the example
in Figure 1, the slice from C235 contains C235, C234, C137, C135, C134,
C133, C132, C131, C122, C18 , C17 , and C16 .

Algorithm 1 outlines the classic backward slicing algorithm
by Agrawal et al. [4]. The algorithm uses a working set ,
that holds pairs (C, E) of statement instance and the variable
used for slicing. It initializes , with the slicing criteria (line

3

Appears in the Proceedings of the 2021 IEEE International Conference on Software Testing, Verification, and Validation (ICST 2021)

Algorithm 1: Dynamic slicing algorithm.

1 Input : DCFG, c, E1, ..., E=
Output: slice

2 begin
⊲ Create working set of pairs of statement instances and used

variables
3 W ← {(c, E1) ... (c, E=)}
4 while W ≠ ∅ do
5 (C , E) ← pick and remove from W
6 slice ← slice ∪ {C }
7 C′ ← the instance C is control-dependent on
8 if C′ not in slice then

⊲ Ensure not processing statements more than once
9 W ← W ∪ {(C′, E′) | E′ ∈ use(C′)}

⊲ Add C ′ to working set with all its used variables
10 C′ ← reaching definition of E at C
11 if C′ not in slice then
12 W ← W ∪ {(C′, E′) | E′ ∈ use(C)}

13 return slice

14 Procedure use(C)
15 return all variables used in C

3 in Algorithm 1) and then iterates over , (lines 4-12)
(i) transitively adding all control and data-flow dependencies
of each pair (C, E) ∈ , to , (lines 7-12) and (ii) adding
statement instances from each processed pair to the produced
slice (line 6). The algorithm terminates when , is empty, i.e.,
it cannot discover new control and data-flow dependencies.

The main challenge of slicing is thus efficiently calculating
data dependencies, as we discuss in Section IV.

III. INTER-CALLBACK DEPENDENCY GRAPH (ICDG)

We represent the execution of an application as an Inter-
Callback Dependency Graph (ICDG), defined below. Figure 2
shows an example of such graph for the Planner app in
Figure 1. The nodes of the graph are statement instances. It
has four types of edges: control-flow and control-dependence
edges correspond to the definitions in Section II. In Figure 2,
control-flow edges are depicted with dotted lines, e.g., between
C15 and C14; control dependencies are depicted with dashed
lines, e.g., between C235 and C234. We only capture control

and control-flow edges within a single callback/thread, e.g.,
onCreateDialog, onValueChange, or onClick. That is be-
cause callbacks/threads are triggered by the Android frame-
work rather than call each other. Thus, there is no incoming
control-flow edge for the nodes C122 and C131.

We depict data-flow edges with solid lines and annotate
each line with the name of the corresponding variable, e.g.,
C235 is data-flow-dependent on C131, with the variable day. We
extend the definition of data-flow edges to consider framework
methods, e.g., C122 and C18 . This is done to capture the data flows
within the method and their effect on the method externally-
visible variables: method parameters and their fields, fields of
this reference and their sub-fields, and static fields and their
sub-fields. Specifically, we model each framework method as
a set of assignments with exactly one right-hand-side and one
left-hand-side variable, denoted by A and ;, respectively. A is
an externally-visible variable modified in the method or the
method return value; ; is the variable affecting the value of A .
For example, method C122 is represented by a single assignment
return = this.values because this method outputs the value
selected from the picker internal values array. In our model,
one variable can appear in more than one assignment, on
both left- and right-hand sides (as a variable can affect and
be affected by more than one other variable) and there is no
significance to the order of assignments in the model.

We now extend the notion of data-flow to consider these
sets of assignments: given two statement instances C and C ′, we
say that C ′ is data-flow dependent on C w.r.t. the variable E if
and only if C contains at least one dynamic reaching definition
of a variable E in any of the expressions in C ′. We build up
on the taint analysis model provided by StubDroid [19] to
approximate the set assignments for a framework method, as
discussed in Section IV.

Finally, Android callbacks can specify which other callbacks
respond to system/UI events. In Figure 1, onCreateDialog()
uses Button::setListener(...) method in line 14 to asso-
ciate the listener with the button, effectively specifying which
method is called when the button is pressed: onClick() in

Control-Flow RegistrationControl Data-Flow

month

monthday year

day year

monthmonth

d

cListener

button button

pListenerpickerpickerpicker

picker.values

Dependency Types

		 		𝑡!"!		 		𝑡!#! 		 		𝑡!!!		 		𝑡!$!		 		𝑡$%!

		 		𝑡"&! 		 		𝑡"#$ 		 		𝑡"'$		 		𝑡"'!		 		𝑡"#!		 		𝑡""!		 		𝑡"$!		 		𝑡"!!

		 		𝑡$$!

		 		𝑡!(!			 	𝑡)!		 		𝑡!)!			 	𝑡%!			 	𝑡&!			 	𝑡*!			 	𝑡'!

Figure 2: Inter-Callback Dependency Graph (ICDG) and the dynamic slice for the Planner app in Figure 1.

4

Appears in the Proceedings of the 2021 IEEE International Conference on Software Testing, Verification, and Validation (ICST 2021)

Trace

▷ Slicing Criteria

▷ Script

Static
Analysis

▷ Android App

Trace
Parsing

Partial ICDGInstrumented App Slice

Field
Alias

Analysis

Framework
Modeling

Dynamic
Slicing

Figure 3: MANDOLINE overview.

line 30. In that case, we say that one callback registers another
and depict the registration dependency between callbacks with
dashed-dotted lines, e.g., C131 is registration-dependent on C114.
We utilize registration dependencies to track the flow of data
between the callbacks and apply similar treatment to define
registration dependencies between threads.

We say that (C, C ′) ∈ ICDG if there is at least one depen-
dency from C ′ to C (i.e., C ′ happens at a later time). We discuss
our slicing approach and our approach to building the ICDG
next.

IV. SLICING WITH TRACE-BASED ALIAS ANALYSIS

A. Main Workflow

Figure 3 gives a high-level overview of MANDOLINE. Our
tool receives as input an Android app, an execution script that
triggers the fault in the app, and a slicing criterion, e.g., a
statement that throws an exception. It produces as output a
backward dynamic slice for the provided slicing criterion.

As the first step, MANDOLINE runs a lightweight static
analysis to instrument the app and to calculate the control and
control-flow dependencies for each statement. Our analysis
and instrumentation relies on Soot [25] and works on its
Jimple intermediate code representation. We follow the basic-
block-level instrumentation by Kamkar et al. [26], which
records a unique identifier of each execution thread (using
Thread.getId()) and for each basic-block within the thread.

The instrumented app is then installed on the device and
the tool runs the pre-recorded execution script (alternatively,
the user can trigger the app manually to reproduce its faulty
behavior). The output of this process is the execution trace, i.e.,
a sequence of the executed basic blocks. MANDOLINE parses
the trace and builds a partial ICDG whose nodes are statement
instances for each executed basic-block, as in the example in
Figure 2. It then separates the nodes by their thread identifiers
and adds control-flow edges between statement instances with
the same thread identifier, in their order of execution.

To add registration dependencies, MANDOLINE relies on the
callback identification logic from FlowDroid [27]. Specifically,
it uses callback classes from FlowDroid and identifies state-
ments that register these callbacks, e.g., line 10 in Figure 1.
It then extracts the type of the object used for callback
registration, e.g., class PListener, and uses this type to match
the registration site with (possibly multiple) registered call-
backs, e.g., onValueChanged(...) callback in line 21 of class
PListener. We add a registration dependency edge for each

such registration, e.g., the edge from C122 to C110 in Figure 2. We
apply similar analysis, also borrowed from FlowDroid, for the
thread identification logic, adding a registration dependency
edge between the statement that creates the thread and the
first statement instance of its corresponding new thread.

The produced partial ICDG, which now contains control-
flow and registration edges, together with the user-defined
slicing criterion, is used as the input to the dynamic slicing
step. We follow the backward slicing algorithm by Agrawal et
al. [4] described in Section II and outlined in Algorithm 1.
The main objective of the algorithm is to identify control
dependencies (line 7) and reaching definitions (line 10).

For identifying the control dependency of a statement in-
stance C<

:
, we find its corresponding statement B: in the static

control dependency graph produced by Soot. We then identify
the statement B8 that B: is control-dependent on and traverse
the ICDG to find the first statement instance of B8 , C

9

8
, creating

the corresponding dynamic control relationship between C<
:

and C 9
8
. For example, C235 is control-dependent on C234 because

B35 is control-dependent on the while condition in B34.
Identifying reaching definitions aims to find statement in-

stances C 9
8

that define a variable E used at statement instance
C<
:

. We distinguish between three types of E: local variables,
fields, and framework methods. For local variables, we simply
follow the work of Agrawal et al. [4]: we traverse the ICDG
backward and stop at the first encountered statement instance
that defines E. For example, the definition of the local variable
day used at C235 is C131. The treatment of fields and framework
methods is the main contribution of our approach, which we
describe in the following two sub-sections.

After control dependencies and reaching definitions are
identified, these statements, together with all the variables that
they use are added to the working set , (lines 9, 2) and the
slicing process continues until no further relevant statements
can be added. MANDOLINE then returns the produced slice:
a set of statement instances that affect the slicing criterion
through transitive control and data dependencies.

B. Data Flows Through Fields

For a field variable E in statement instance C, we use field
alias analysis to find its alias statement set (: all statement
instances that define variables aliasing E. We then find defini-
tions of all variables in (and, from those, pick the last one
that reaches C (without redefinitions). Unlike static approaches,
we perform the alias analysis directly on the execution trace.

5

Appears in the Proceedings of the 2021 IEEE International Conference on Software Testing, Verification, and Validation (ICST 2021)

Our analysis starts from the statement instance C that
uses E and goes backward, in the inverse execution order,
to find each statement instance C ′ that defines a variable E′

as an alias to E. Then, from each identified statement C ′, it
spawns a forward analysis to find other possible variables
that transitively alias E between C ′ and C. For the example
in Figure 2, the backward analysis starts from C235, looking
for the definition of the local variable day. This variable is
defined in C131 as the field PlanDialog.this.d. The name of
the field is, in fact, “syntactic sugar” translated by the compiler
to the variable this.this$0.d. By traversing the control-
flow and registration dependencies, the analysis finds aliases
to this field in C128 and C119. Spawning the forward analysis
from each of these two instances further finds an alias in C122
(via a registration dependency from C122 and C110 followed by
two control-flow dependencies to C19 and C119). Thus, the alias
statement set (for PlanDialog.this.d in this example is C128,
C122, and C119. According to the trace order, C122 is the last out of
those three statements that was executed before C131; thus, it is
selected as a definition of this.this$0.d. The main slicing
loop (Algorithm 1) then continues from C122.

Algorithm 2 gives a more formal definition of the alias ana-
lysis approach described above. The algorithm accepts as input
the ICDG, statement instance C, and variable E (initialized
separately for each variable in the slicing criterion). It outputs
a set of statement instances) ′ containing the definition of
E and, possibly, also the definitions of its individual fields,
if such definitions exist in the trace. The set + contains all
found aliases of E and is initialized with E itself (line 3).
The algorithm then traverses the control-flow and registration
dependencies in the ICDG, looking for additional aliases of E
and their corresponding definition statement instances, which
are collected in ((line 4). Once (is built, the algorithm
identifies the latest statement instance in ((according to the
trace order) that defines E and each of its fields; it outputs this
set of definitions (line 5).

The algorithm starts from the backward traversal (lines 6-
17), processing one statement instance at a time and spawning
additional backward and forward steps. When inspecting the
next statement C ′ in the ICDG (line 9), the algorithm first
checks if C and C ′ are in the same method (line 10). If not, the
ChangeScope operator translates the namespace in + (line 11)
to the new method, accounting for local variables that refer-
ence same objects due to parameter passing and returns. For
example, this in C131 is translated to its corresponding variable
cListener when crossing the method boundaries to C114.

Then, the algorithm checks whether the inspected statement
C ′ is an assignment and whether its defined variable (left-hand
side of C ′, which we denote by LHS(C ′)) overlaps with a variable
that is already in + (line 12). If so, C ′ is a definition of this
variable in + and is added to the set of definitions ((line
13). The algorithm further examines C ′ to decide on the set of
variables for the next steps in backward and forward analysis
(line 14). To do so, it uses the helper function AliasAnalysis
(lines 30-47), which obtains three parameters: the current
direction of the analysis, the set + , and the statement instance

Algorithm 2: Alias analysis.

1 Input: ICDG, C , E
Output:) ′

2 begin
3 + ← {E } ⊲ Aliases of the variable E
4 (← BackwardAnalysis(ICDG, + , C) ⊲ Alias statements
5 return LastDefined((, C) ⊲ Definitions of E and its fields

6 Procedure BackwardAnalysis(ICDG, + , C)
7 begin
8 (← ∅

⊲ Traverse the ICDG in inverse execution order
9 foreach C′ s.t. (C′, C) ∈ ICDG do

10 if method (C) ≠ method (C′) then
11 + ← ChangeScope(+ , method (C) , method (C′))
12 if ∃E ∈ + s.t. E and LHS(C′) have a common prefix then

⊲ C′ is a definition of a variable in +
13 (← (∪ {C′ } ⊲ Add the definition statement

14 <+1 ,+ 5 > ← AliasAnalysis(↑, + , C′)
15 (← (∪ BackwardAnalysis(ICDG, +1 , C′)
16 (← (∪ ForwardAnalysis(ICDG, + 5 , C′)

17 return (

18 Procedure ForwardAnalysis(ICDG, + , C)
19 begin
20 (← ∅

⊲ Traverse the ICDG in execution order
21 foreach C′ s.t. (C , C′) ∈ ICDG do
22 if method (C) ≠ method (C′) then
23 + ← ChangeScope(+ , method (C) , method (C′))
24 if ∃E ∈ + s.t. E is a prefix of LHS(C′) then

⊲ C′ is a definition of a field of a variable in +
25 (← (∪ {C′ } ⊲ Add the definition statement

26 <+1 ,+ 5 > ← AliasAnalysis(↓, + , C′)
27 (← (∪ BackwardAnalysis(ICDG, +1 , C′)
28 (← (∪ ForwardAnalysis(ICDG, + 5 , C′)

29 return (

30 Procedure AliasAnalysis(3, + , C′)
⊲ Initialize with the original set of variables

31 if 3 =↑ then
32 +1 ← + ; + 5 ← ∅
33 else if 3 =↓ then
34 +1 ← ∅; + 5 ← +

35 foreach E ∈ + s.t. E and RHS(C′) have a common prefix do
⊲ LHS(C′) is a new alias for E

36 + 5 ← + 5 ∪ ExtendFields(LHS(C′)) ⊲ Follow it forward

37 foreach E ∈ + s.t. E is a prefix of LHS(C′) do
⊲ C′ is a re-definition of a field of E
⊲ Follow the assigned variable both backward and forward

38 +1 ← +1 ∪ RHS(C′)
39 + 5 ← + 5 ∪ RHS(C′)

40 foreach E ∈ + s.t. LHS(C′) is a prefix or equal to E do
⊲ C′ is a full re-definition of E

41 if 3 =↑ then
42 +1 ← +1 \ {E } ⊲ Do not search before the definition

⊲ Follow the assigned variable both backward and forward
43 +1 ← +1 ∪ ExtendFields(RHS(C′))
44 + 5 ← + 5 ∪ ExtendFields(RHS(C′))

45 else if 3 =↓ then
46 + 5 ← + 5 \ {E } ⊲ Do not search for new variables

47 return <+1 ,+ 5 >

C ′. It returns a tuple <+1 ,+ 5 >, where +1 defines a set of
variables for the next step of the backward analysis (line 15)
and + 5 defines a set of variables for the forward analysis (line
16). These subsequent analysis steps further traverse the graph,
collecting more definitions of E that are stored in ((lines 15-
16). After these steps terminate, the backward analysis returns
the collected set of definitions (line 17).

6

Appears in the Proceedings of the 2021 IEEE International Conference on Software Testing, Verification, and Validation (ICST 2021)

The forward analysis is similar (lines 18-29), except that
it only adds definitions of the fields in E (lines 24-25), as a
definition of the entire variable from E when processing the
trace forward would kill the original variable of interest.

To decide how to build +1 and + 5 , AliasAnalysis starts
from the assumption that backward analysis (denoted by ↑)
should process backwards with the original set of variables,
i.e., +1 is initialized to + , and with no elements for forwards
analysis, i.e., + 5 is empty (line 32). Likewise, forward analysis
(denoted by ↓) assumes proceeding forward with the original
set + and with an empty backward set by default (line 34).

The algorithm then considers three possible types of assign-
ment in C ′. First, C ′ could specify a new alias for a variable
E ∈ + , e.g., if + includes a variable G.H.I and C ′ is a.b =
x.y (lines 35-38). The algorithm then needs to search for the
new alias (i.e., the left-hand side of the assignment) forward,
as the backward analysis could have missed definitions of this
newly discovered field that occurred before the slicing criteria,
e.g., a.b.z = w. We thus add the corresponding left-hand-side
variable to + 5 , extending its fields to match those of E (line
36), if needed. I.e., we extend 0.1 to 0.1.I, as that is an alias
to the original variable G.H.I.

If the variable defined in C ′ is a field of a variable E ∈ + , e.g.,
if + includes a variable G.H.I and C ′ is x.y.z.w = a.b, we say
that C ′ redefines a field of E (lines 37-38). In such cases, the
algorithm searches for the assigned variable, e.g., 0.1, both
backwards and forward, to find all possible definitions that
occurred before the slicing criteria.

Finally, if the variable defined in C ′ is a full redefinition
of a variable E ∈ + , e.g., if + includes a variable G.H.I and
C ′ is x.y = a.b or x.y.z = a.b, we distinguish between
the backward and forward searches (lines 40-46). For the
backward search (↑), we remove the redefined variable E from
subsequent backward search (line 42) because the definition in
C ′ kills all prior definitions of the variable with the same name.
Instead, we search for the assigned variable, e.g., 0.1, both
backwards and forward, like in the previous case (lines 43-
44). In the forward search (↑), we simply remove the variable
defined in C ′ from further analysis (line 46), as C ′ redefined the
original variable of interest with the same name (if it existed)
and this new definition is not relevant to our search.

Our implementation also provides several optimizations
improving the efficiency of this conceptual algorithm, e.g.,
we do not traverse the graph past the slicing criteria and add
additional handling for registrations dependencies dealing with
callbacks and threads. Details are available online [22].

C. Data Flows Through Framework Methods

We extend our treatment of data dependencies by modeling
Android framework methods as a set of assignments that cap-
ture the aliasing effect of a method, as described in Section III.
When traversing the ICDG using Algorithm 2, we treat a
framework method as an unordered set of assignments, pro-
cessing each independently of others using AliasAnalysis.

To produce the framework model, we rely on Stub-
Droid [19] – a tool originally designed to produce accurate

framework method summaries for the taint-analysis problem.
Specifically, StubDroid defines how a taint originated from
each method inputs (i.e., fields and parameters) propagates
to its output (i.e., fields, parameters, and return value). We
recast the taint-flow summaries of StubDroid as assign-
ment statements which our analysis can use to propagate
alias information, converting each taint-flow to an assign-
ment. For example, the StubDroid summary for the method
Picker::setMaxValue(int) will state that a taint from its
first parameter P1 reaches the field this.max. We use this in-
formation to represent a method as an assignment this.max =
P1, expressing the fact that the value of this parameter is
assigned to the Picker’s field max (directly or indirectly).

To deal with the situation that tainted parameters and
fields might change within the method (without causing taint
propagation), we augment all summaries with self-assignments
for these objects and their fields. E.g., for the method call X =
Y.foo(Z), we add Z.* = Z.* and Y.* = Y.* to the summaries,
where .* represents an object or any of its sub-fields.

StubDroid summaries exclude some methods, i.e., those
containing native code. In such cases, we use FlowDroid’s
original taint wrappers [27], which provide a coarser-grained
model of framework methods. Taint wrappers divide the
framework methods into four types: generation, exclude, kill,
and default. We use the statement X = Y.foo(Z) to explain
the four strategies.

The generation strategy assumes that taints always flow
from all arguments (Z) and the receiver object (Y) to the
receiver and the return value (X), as well as all their fields (Y.*
and X.*). Thus, there are four assignments, Y* = Z.*, Y.* =
Y.*, X.* = Z.*, and X.* = Y.*. We also include the identity
assignment to approximate the situation that tainted parameters
change within the method: Z.* = Z.* In the exclude strategy,
taint only propagates from the tainted variable to itself, which
is equivalent to the identity assignment Y.* = Y.* and Z.*
= Z.*. The kill strategy removes all taints: none of the
variables is tainted after the method is called. Finally, the
default strategy assumes that all taints propagate from the
parameters to the return variable and its fields (but not to the
receiver object): X.* = Y.*, X.* = Z.*, Z.* = Z.*.

The list of framework methods summaries that we used
is available online [22]. While these summaries might over-
approximate the set of possible behaviors, they make it possi-
ble for MANDOLINE to deal with the flow of data within the
framework methods.

V. EVALUATION

We now describe our experimental setup and discuss the
evaluation results. To evaluate MANDOLINE, we answer the
following research questions:
RQ1 (Accuracy): How does the accuracy of MANDOLINE
compare to the state-of-the-art?
RQ2 (Performance): How does the performance of MAN-
DOLINE compare to the state-of-the-art?

7

Appears in the Proceedings of the 2021 IEEE International Conference on Software Testing, Verification, and Validation (ICST 2021)

A. Experimental Setup

1) Subject Applications: To create a benchmark of manual
slices, we started from DroixBench [21] and ReCDroid [20]
benchmarks, which consist of 24 and 51 faulty apps, re-
spectively. All faults in these apps manifest in crashes. We
chose these benchmarks because each app has an associated
GitHub issue describing steps for reproducing the crash and
because the statement in which an app crashes, together with
all variables it uses, is a realistic slicing criterion.

We omitted apps for which we could not reproduce the crash
and (1) apps that do not specify a fix for the crash, (2) apps
where the fix is not in the source code of the app but rather in
the resources or build files, (3) apps where the fix is not related
to the existing code of the buggy app, and (4) apps that could
not be instrumented to obtain a dynamic trace, most probably
because they use language constructs that are not supported
by the underlying Soot framework. For the remaining 14 apps,
we manually reproduced the crash using the description in the
GitHub issue and further filtered out two apps which required
physical interaction with the device to trigger the crash, e.g.,
changing the screen orientation.

Our final dataset consists of 12 apps. We recorded execution
scripts reproducing the crash in each app using the android-
touch-record-replay tool [28]. We manually analyzed each app,
applying the slicing algorithm described in Algorithm 1 to
establish the “ground truth” dynamic slice. The manual slices
were produced independently and in parallel by two members
of our research group, in an effort that took more than 30 work-
days. Any observed differences were discussed in a meeting
with all the authors towards reaching a joint resolution.

Table I summarizes the subjects of our experiment. The
table columns show the app name, app size, trace size, and
the manual slice size. We report all sizes in the number of
Jimple statements of the underlying app representation (#JS).

2) Methods and Metrics: We compare MANDOLINE to
ANDROIDSLICER, the state-of-the-art dynamic slicer for An-
droid. The available implementation of ANDROIDSLICER [29]
suffers from several shortcomings, such as missing control
dependency analysis and missing data-flow analysis through
method parameters and returns. ANDROIDSLICER also uses
statement-level instrumentation, which causes a high over-
head when compared to basic-block level instrumentation.
We thus contribute an enhanced version of ANDROIDSLICER,
called ANDROIDSLICER++, which addresses these ANDROID-
SLICER implementation issues.

To answer RQ1, we compute slices using ANDROID-
SLICER, ANDROIDSLICER++, and MANDOLINE. We com-
pare the manual slices with the slices produced by each tool
and calculate the recall (R), precision (P), and F-Measure (F)
achieved by each tool. The recall is the fraction of statement
instances in both the computed slice and the manual slice
out of the number of statement instances in the manual slice.
It measures the tools’ ability to correctly identify statement
instances that are in the manual slice. The precision is the
fraction of statement instances in both the computed slice and

Table I: Evaluation subject apps.

App Size (#JS) Trace (#JS) Manual Slice (#JS)
anki 250,966 291,910 82

birthdroid 24,999 1,060 23
fastadapter 202,815 488,010 226

fdroid 412,380 1,197,098 282
gnucash (2.0.5) 328,603 389,827 46
gnucash (2.1.4) 443,431 1,843,698 80

habdroid 327,250 842,874 4
k9 (5.111) 249,858 80,007 7
k9 (5.403) 259,033 10,602 99
micromath 325,292 2,381,831 27
newsblur 68,103 16,985 51

specialdates 146,360 275,504 353

the manual slice out of the number of statement instances in
the computed slice. It measures the tools’ ability to exclude
statement instances that are not in the manual slice. The F-
measure is a harmonic mean that balances precision and recall.
It reflects how well the tool can balance identifying relevant
statement instances (in the manual slice) while rejecting irrel-
evant statements (not in the manual slice), F-measure = 2 '∗%

'+% .
To answer RQ2, we compare the instrumentation overhead

of the tools as well as their slicing time. To reduce execution
time fluctuation due to external causes, we run each exper-
iment five times and average the execution times for each
experiment. For the instrumentation overhead, we perform all
runs on the same Pixel 2 device running Android API 28.
We follow the work of Li et al. [30] in measuring the on-
device CPU execution time of the app, CPUt. Specifically,
we add additional lightweight instrumentation in all apps to
record the execution time of each thread and callback and
compute the app’s CPU time as the sum of the execution time
of all threads and callbacks. Such method eliminates input-
dependent wait time, e.g., when the app waits for sensory
inputs. We then compute the instrumentation overhead ($) for
each instrumentation method compared with the CPU time of
the original app, $ =

CPUttool−CPUtoriginal
CPUtoriginal

∗ 100%. For the slicing
time, we run the slicing part of each tool on its corresponding
trace and measure the execution time (�C). We run these
experiments on an Intel Xeon 2.6 GHz machine, allocating
one core and 124GB of RAM to each run.

B. Results

RQ1: Table II shows the slice size (#JS) for the manual slice
(column 2) and then for the slice produced by each of the
tools (columns 3, 7, and 11). It also shows the accuracy
results for each tool: recall, precision, and F-measure. Our
results show that the accuracy of MANDOLINE, in terms of
F-measure, is higher than that of ANDROIDSLICER in all 12
apps. Furthermore, the average F-measure for MANDOLINE is
81%, compared with only 48% for ANDROIDSLICER++ and
22% for ANDROIDSLICER.

In two of the apps, anki and birthdroid, ANDROID-
SLICER achieves higher precision than MANDOLINE. That is
because the slice computed by ANDROIDSLICER is relatively
small; it thus contains only a few irrelevant statements. Yet,
such behavior leads to a low recall and low overall F-measure.

8

Appears in the Proceedings of the 2021 IEEE International Conference on Software Testing, Verification, and Validation (ICST 2021)

Table II: Accuracy.

App Manual ANDROIDSLICER ANDROIDSLICER++ MANDOLINE
#JS #JS R% P% F% #JS R% P% F% #JS R% P% F%

anki 82 12 14 92 24 3 4 100 7 83 92 91 92
birthdroid 23 6 33 100 49 8 34 100 51 18 73 94 82
fastadapter 226 43 7 33 11 28 12 100 22 226 73 73 73

fdroid 282 20 2 30 4 54 15 80 25 270 84 88 86
gnucash (2.0.5) 46 10 13 60 21 48 43 41 42 46 73 73 73
gnucash (2.1.4) 80 6 2 83 4 18 17 77 28 59 62 84 72

habdroid 4 4 75 75 75 4 50 100 66 4 100 100 100
k9 (5.111) 7 11 28 18 22 7 100 100 100 7 100 100 100
k9 (5.403) 99 7 5 41 9 82 55 77 60 90 57 63 60
micromath 27 43 40 25 31 11 40 100 57 33 92 75 83
newsblur 51 10 5 30 10 45 82 93 87 51 96 96 96

specialdates 353 44 3 18 5 59 15 94 27 226 47 73 57
Mean 107 18 19 50 22 30 39 87 48 92 79 84 81

Table III: Instrumentation overhead and slicing time (in seconds).

App Exec.
time(s)

ANDROIDSLICER ANDROIDSLICER++ MANDOLINE
CPUC $% �C(s) CPUC $% �C(s) CPUC $% �C(s)

anki 0.4 7.8 1765.5 59.2 - - 70.9 2.3 462.1 230.6
birthdroid 0.1 0.1 6.8 3.77 - - 5.98 0.1 1.4 52.6
fastadapter 0.7 11 1498.9 118.8 - - 75.2 5.4 685 284.5

fdroid 6.4 44.9 601.9 63.8 - - 103.7 6.7 5.7 638.6
gnucash (2.0.5) 0.6 12.5 1805.8 42.7 - - 103.3 3 360.3 302.2
gnucash (2.1.4) 1.7 34.9 1850.7 40.5 - - 264.1 8.3 368.8 964.9

habdroid 0.8 56.5 7067.5 37.6 - - 88.6 6.5 720.6 403.5
k9 (5.111) 0.2 2.9 1445.2 49.5 - - 86.41 0.2 25.9 212.2
k9 (5.403) 0.1 0.3 364.9 57.5 - - 81.25 0.7 13.2 227
micromath 0.4 102 27654.3 29.3 - - 131.3 2.7 654.1 572.8
newsblur 0.1 0.9 671.1 17.2 - - 15.2 0.4 253.4 150

specialdates 0.2 6 2492.9 27.4 - - 38.3 2.3 893.9 208.1
Mean 0.9 23.3 3935.5 45.6 - - 88.7 3.2 370.9 353.9

MANDOLINE outperforms ANDROIDSLICER++ in terms
of F-measure in 10 apps and performs equivalently in the
remaining two: k9 (5.111) and k9 (5.403). For the first app,
both tools achieve a perfect F-measure of 100% because
the slice does not contain any field references: it has only
seven statements all within two methods calling each other
in a single callback. ANDROIDSLICER cannot identify the
desired slice because it misses control flows from method
return statements. Moreover, it identifies irrelevant statements
in the callee method due to overapproximation in dealing with
method parameters.

For the second app, while the recall of MANDOLINE is
slightly higher than that of ANDROIDSLICER++ (57% vs.
55%), its precision is lower (63% instead of 67%). In this
app, MANDOLINE adds unnecessary statements to the slice
because of its approximate handling of arrays: when looking
for a definition of an element in a certain position in an array,
MANDOLINE includes definitions of all array elements.

In addition, we observed two main reasons MANDOLINE
cannot achieve an even higher accuracy. The first is due
to inaccurate handling of registration dependencies between
callbacks. When connecting one callback to another, MAN-
DOLINE relies on FlowDroid’s point-to analysis to identify
the type of the registered callback listener. Inaccurate analysis
leads to overapproximations in possible listener types, e.g., all
listeners implementing the View.OnClickListener interface.
This results in unnecessary registration dependencies among

callbacks, causing MANDOLINE to traverse unfeasible paths
in the ICDG, identify incorrect variable definitions (reduced
precision), and miss the correct ones (reduced recall).

Another reason for the drop in accuracy is the absence
of certain framework methods, e.g., native methods, in the
StubDroid and FlowDroid taint-wrapper models. Such meth-
ods are treated with the default strategy, which assumes that
the method only modifies the return value. As a result, the
data-flow propagation cannot reach the desired definitions.

Answer to RQ1: Our experiments show that using field alias
analysis and framework modeling with dynamic slicing is
effective and achieves more than 81% accuracy on average,
almost four times higher than that of ANDROIDSLICER.

RQ2: Table III shows the CPU time, in seconds, of each app
without any instrumentation (column 2) and the corresponding
numbers for ANDROIDSLICER’s statement-level (column 3)
and MANDOLINE’s basic-block-level instrumentation (column
9). ANDROIDSLICER++ relies on the same instrumentation
as MANDOLINE and we thus omit these numbers in the
table. The table also shows the overhead of both instrumen-
tations (column 4 for ANDROIDSLICER and column 10 for
MANDOLINE), when compared with the app without any
instrumentation. Our results confirm that the instrumentation
overhead of MANDOLINE is consistently lower than that of
ANDROIDSLICER, with the difference being more noticeable
as the runtime of an app increases, e.g., fdroid and micromath.

9

Appears in the Proceedings of the 2021 IEEE International Conference on Software Testing, Verification, and Validation (ICST 2021)

At the same time, the slicing time for ANDROIDSLICER,
ANDROIDSLICER++ and MANDOLINE (columns 5, 8, and 11,
respectively) shows that MANDOLINE is slower than the other
two. That is because it needs to perform the on-demand field
alias analysis and also processes bigger slices. We still find the
slicing execution time acceptable given the improved accuracy
and run-time overhead: it takes MANDOLINE around 6 minutes
on average to compute a slice while ANDROIDSLICER++
takes less than 2 minutes on average.

Answer to RQ2: Our experiments show that, on average, the
runtime overhead of MANDOLINE is 10 times lower than the
state-of-the-art. Its increased accuracy comes at the expense
of almost eight-fold increase in slicing time.

C. Limitations and Threats to Validity

For external validity, our results may be affected by the
subject apps’ selection and may not necessarily generalize
beyond our subjects. We attempted to mitigate this threat
by using a set of apps available from related work without
introducing investigator bias into the selection process. As
we used different apps of considerable size and complexity,
we believe our results are reliable. Furthermore, we had to
create the ground truth for dynamic slicing manually, as such a
benchmark was not available from prior research. To mitigate
possible bias related to this manual effort, two members of
our research group performed the analysis independently and
cross-checked each other’s results. We make our implementa-
tion and evaluation setup publicly available [22] to encourage
validation and replication of our results.

For internal validity, deficiencies of the underlying tools
our approach uses, such as Soot, FlowDroid, and StubDroid,
might affect the accuracy of MANDOLINE. We controlled for
this threat by manually analyzing the cases that we considered,
to identify reasons for inaccuracies.

The main limitation of our approach is in relying on static
information for building ICDG, such as the list of threads and
callbacks from FlowDroid, object classes to identify targets
for the callback registration statements, and statically gener-
ated method summaries for framework methods. We plan to
investigate ways to address these limitations, e.g., by obtaining
more accurate information dynamically, as part of future work.

VI. RELATED WORK

Our discussion of related work focuses on efficient dynamic
slicing techniques and alias analysis.
Dynamic slicing. Agrawal et al. [3] presented dynamic slicing
using graphs of statement instances. Duesterwald et al. [31]
extended dynamic slicing for multi-threaded programs by
using inter-thread data dependencies. Agrawal et al. [4] pro-
duced dynamic slices for programs with pointers by memory
overlapping to find reaching definitions of pointers. It also
adapted the slicing algorithm to work across methods.

Gupta et al. [32] proposed a hybrid approach to reduce
the overhead of dynamic slicing. Instrumentation is done at
a limited number of statements instead of the whole code,

this instrumentation serves to eliminate unfeasible paths from
the static control flow graph before performing static slicing.
Tallam et al. [33] proposed a technique to record execution
traces for threads relevant to the fault while ignoring irrelevant
threads. Wang et al. [5] proposed compressing the execution
trace at runtime to reduce the trace size. Zhang et al. [13]
proposed an efficient method for traversing the trace to find
reaching definitions by splitting the trace into chunks and
summarize defined variables within a chunk. Our work is
inspired by these approaches to reduce runtime overhead;
however, it focuses specifically on computing data flows from
lightweight execution traces and can be combined with these
efficient trace collection mechanisms in future work.

ANDROIDSLICER [11] is the closest to our work as it is the
only other dynamic slicer for Android apps. ANDROIDSLICER
solves the problem of slicing across multiple components by
modeling component transitions. Yet, it keeps the runtime
overhead low by sacrificing field dependencies tracking. Our
work deals with this limitation via field alias analysis and
also contributes modeling of Android framework methods to
increase slicing accuracy.

SAAF [34] is the first static slicer for Android apps as it can
slice Android bytecode. Harvester [35] is also a static slicer for
Android that is capable of producing executable slices. Static
slicers suffer from a common drawback: a larger slice, when
compared to their dynamic counterparts.
Alias analysis. Zheng et al. [16] proposed an alias analysis
using a graph representation of the program. Yan et al. [17]
modeled aliases using a graph representation of the heap.
Boomerang [36] utilizes the IFDS framework [37] to find
aliases of fields. Andromeda [18] is the closest to our work
since it uses alias sets of access paths for the alias analysis. All
static alias analysis techniques face challenges such as dealing
with context, path, and flow sensitivities while keeping the
analysis scalable. Such challenges do not exist for a dynamic
trace: the calling context, the execution path, and control flows
are all known from the trace. Our technique is the first to
propose alias analysis directly on the trace and thus does not
suffer from the challenges of the static tools.

VII. CONCLUSION

This paper introduced an accurate and efficient approach
for dynamic slicing of Android applications and implemented
it in a tool named MANDOLINE. The main contribution of
MANDOLINE is the lightweight application instrumentation
that produces the minimally-necessary app execution trace,
followed by a sophisticated analysis performed on the obtained
trace to recover data dependencies via alias analysis and mod-
eling of the Android framework methods. Our experimental
evaluation shows that MANDOLINE outperforms the state-
of-the-art Android slicing tool, ANDROIDSLICER, in both
accuracy and efficiency.

Acknowledgments. We thank our research group member,
Yingying Wang, for the help in creating and cross-validating
the manual slices. We also thank the authors of ANDROID-
SLICER for answering our questions about the tool.

10

Appears in the Proceedings of the 2021 IEEE International Conference on Software Testing, Verification, and Validation (ICST 2021)

REFERENCES

[1] M. Weiser, “Program Slicing,” in Proc. of the International Conference
on Software Engineering (ICSE), 1981, p. 439–449.

[2] B. Korel and J. Laski, “Dynamic Program Slicing,” Information Pro-
cessing Letters, vol. 29, no. 3, pp. 155–163, 1988.

[3] H. Agrawal and J. R. Horgan, “Dynamic Program Slicing,” ACM
SIGPLAN Notices, vol. 25, no. 6, pp. 246–256, 1990.

[4] H. Agrawal, R. A. DeMillo, and E. H. Spafford, “Dynamic Slicing in
the Presence of Unconstrained Pointers,” in Proc. of the Symposium on
Testing, Analysis, and Verification (TAV), 1991, pp. 60–73.

[5] T. Wang and A. Roychoudhury, “Using Compressed Bytecode Traces
for Slicing Java Programs,” in Proc. the International Conference on
Software Engineering (ICSE), 2004, pp. 512––521.

[6] E. Alves, M. Gligoric, V. Jagannath, and M. d’Amorim, “Fault-
Localization Using Dynamic Slicing and Change Impact Analysis,” in
Proc. of the International Conference on Automated Software Engineer-
ing (ASE), 2011, pp. 520–523.

[7] X. Mao, Y. Lei, Z. Dai, Y. Qi, and C. Wang, “Slice-based Statistical
Fault Localization,” Journal of Systems and Software, vol. 89, pp. 51–
62, 2014.

[8] X. Li and A. Orso, “More Accurate Dynamic Slicing for Better Support-
ing Software Debugging,” in Proc. of the International Conference on
Software Testing, Validation and Verification (ICST), 2020, pp. 28–38.

[9] Wikipedia, “Android version history,”
https://en.wikipedia.org/wiki/Android_version_history, (Last accessed:
January 2021).

[10] Y. Hu, T. Azim, and I. Neamtiu, “Versatile yet Lightweight Record-
and-Replay for Android,” in Proc. of the ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2015, pp. 349––366.

[11] T. Azim, A. Alavi, I. Neamtiu, and R. Gupta, “Dynamic Slicing
for Android,” in Proc. of the International Conference on Software
Engineering (ICSE), 2019, pp. 1154–1164.

[12] Google, “Buttons,” https://developer.android.com/guide/topics/ui/controls/
button, (Last accessed: January 2021).

[13] X. Zhang, R. Gupta, and Y. Zhang, “Precise Dynamic Slicing Algo-
rithms,” in Proc. of the International Conference on Software Engineer-
ing (ICSE), 2003, pp. 319–329.

[14] X. Zhang and R. Gupta, “Cost Effective Dynamic Program Slicing,” in
Proc. of ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), 2004, pp. 94–106.

[15] A. Deutsch, “A Storeless Model of Aliasing and its Abstractions using
Finite Representations of Right-Regular Equivalence Relations,” in Proc.
of the International Conference on Computer Languages (ICCL), 1992,
pp. 2–13.

[16] X. Zheng and R. Rugina, “Demand-Driven Alias Analysis for C,”
in Proc. of the 35th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), 2008, p. 197–208.

[17] D. Yan, G. Xu, and A. Rountev, “Demand-Driven Context-Sensitive
Alias Analysis for Java,” in Proc. of the International Symposium on
Software Testing and Analysis (ISSTA), 2011, pp. 155––165.

[18] O. Tripp, M. Pistoia, P. Cousot, R. Cousot, and S. Guarnieri, “AN-
DROMEDA: Accurate and Scalable Security Analysis of Web Ap-
plications,” in Proc. of the International Conference on Fundamental
Approaches to Software Engineering (FASE), 2013, pp. 210–225.

[19] S. Arzt and E. Bodden, “StubDroid: Automatic Inference of Precise
Date-flow Summaries for the Android Framework,” in Proc. of the
International Conference on Software Engineering (ICSE), 2016, pp.
725–735.

[20] Y. Zhao, T. Yu, T. Su, Y. Liu, W. Zheng, J. Zhang, and W. G. J. Halfond,
“ReCDroid: Automatically Reproducing Android Application Crashes

from Bug Reports,” in Proc. of the International Conference on Software
Engineering (ICSE), 2019, pp. 128–139.

[21] S. H. Tan, Z. Dong, X. Gao, and A. Roychoudhury, “Repairing Crashes
in Android Apps,” in Proc. of the International Conference on Software
Engineering (ICSE), 2018, pp. 187–198.

[22] “Mandoline,” https://resess.github.io/PaperAppendices/Mandoline/,
2020.

[23] F. E. Allen, “Control Flow Analysis,” ACM SIGPLAN Notices, vol. 5,
no. 7, p. 1–19, 1970.

[24] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The Program De-
pendence Graph and Its Use in Optimization,” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 9, no. 3, pp. 319–
349, 1987.

[25] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot - a Java Bytecode Optimization Framework,” in Proc. of the Con-
ference of the Centre for Advanced Studies on Collaborative Research
(CASCON), 1999, pp. 1–11.

[26] M. Kamkar, N. Shahmehri, and P. Fritzson, “Interprocedural Dynamic
Slicing,” in Proc. of the International Symposium on Programming
Language Implementation and Logic Programming (PLILP), 1992, pp.
370–384.

[27] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “FlowDroid: Precise Context,
Flow, Field, Object-Sensitive and Lifecycle-Aware Taint Analysis for
Android Apps,” in Proc. of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), 2014, pp. 259–
–269.

[28] J. Cartucho, “Record and Replay Touchscreen Events on An-
droid,” https://github.com/Cartucho/android-touch-record-replay, (Last
accessed: January 2021).

[29] T. Azim, A. Alavi, I. Neamtiu, and R. Gupta, “AndroidSlicer,”
https://github.com/ucr-riple/AndroidSlicer, (Last accessed: January
2021).

[30] D. Li, S. Hao, W. G. Halfond, and R. Govindan, “Calculating Source
Line Level Energy Information For Android Applications,” in Proc. of
the International Symposium on Software Testing and Analysis (ISSTA),
2013, pp. 78–89.

[31] E. Duesterwald, R. Gupta, and M. L. Soffa, “Distributed Slicing and
Partial Re-execution for Distributed Programs,” in Proc. of Languages
and Compilers for Parallel Computing, 1993, pp. 497–511.

[32] R. Gupta, M. L. Soffa, and J. Howard, “Hybrid Slicing: Integrating
Dynamic Information with Static Analysis,” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 6, no. 4, pp.
370–397, 1997.

[33] S. Tallam, C. Tian, R. Gupta, and X. Zhang, “Enabling Tracing Of Long-
Running Multithreaded Programs via Dynamic Execution Reduction,” in
Proc. of the International Symposium on Software Testing and Analysis
(ISSTA), 2007, p. 207–218.

[34] J. Hoffmann, M. Ussath, T. Holz, and M. Spreitzenbarth, “Slicing
Droids: Program Slicing for Smali Code,” in Proc. of the Annual ACM
Symposium on Applied Computing (SAC), 2013, pp. 1844–1851.

[35] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden, “Harvesting
Runtime Values in Android Applications That Feature Anti-Analysis
Techniques.” in Proc. of the Network and Distributed System Security
Symposium (NDSS), 2016, pp. 1–15.

[36] J. Späth, L. Nguyen Quang Do, K. Ali, and E. Bodden, “Boomerang:
Demand-Driven Flow- and Context-Sensitive Pointer Analysis for Java,”
in Proc. of the European Conference on Object-Oriented Programming
(ECOOP), 2016, pp. 22:1–22:26.

[37] T. Reps, S. Horwitz, and M. Sagiv, “Precise Interprocedural Dataflow
Analysis via Graph Reachability,” in Proc. of the SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), 1995,
pp. 49–61.

11

	Introduction
	Background and Notations
	Application Structure
	Control and Data Dependencies
	Slicing

	Inter-Callback Dependency Graph (ICDG)
	Slicing with Trace-Based Alias Analysis
	Main Workflow
	Data Flows Through Fields
	Data Flows Through Framework Methods

	Evaluation
	Experimental Setup
	Subject Applications
	Methods and Metrics

	Results
	Limitations and Threats to Validity

	Related Work
	Conclusion
	References

