
ViaLin: Path-Aware Dynamic Taint Analysis for Android
Khaled Ahmed, Yingying Wang, Mieszko Lis, Julia Rubin

The University of British Columbia, Canada
{khaledea,wyingying,mieszko,mjulia}@ece.ubc.ca

ABSTRACT

Dynamic taint analysis – a program analysis technique that checks
whether information flows between particular source and sink lo-
cations in the program, has numerous applications in security, pro-
gram comprehension, and software testing. Specifically, in mobile
software, taint analysis is often used to determine whether mobile
apps contain stealthy behaviors that leak user-sensitive information
to unauthorized third-party servers. While a number of dynamic
taint analysis techniques for Android software have been recently
proposed, none of them are able to report the complete information
propagation path, only reporting flow endpoints, i.e., sources and
sinks of the detected information flows. This design optimizes for
runtime performance and allows the techniques to run efficiently
on a mobile device. Yet, it impedes the applicability and usefulness
of the techniques: an analyst using the tool would need to manually
identify information propagation paths, e.g., to determine whether
information was properly handled before being released, which is
a challenging task in large real-world applications.

In this paper, we address this problem by proposing a dynamic
taint analysis technique that reports accurate taint propagation
paths. We implement it in a tool, ViaLin, and evaluate it on a
set of existing benchmark applications and on 16 large Android
applications from the Google Play store. Our evaluation shows
that ViaLin accurately detects taint flow paths while running on a
mobile device with a reasonable time and memory overhead.

CCS CONCEPTS

• Software and its engineering; • Theory of computation→
Program analysis;

KEYWORDS

Dynamic taint analysis, path tracking, Android

ACM Reference Format:

Khaled Ahmed, Yingying Wang, Mieszko Lis, Julia Rubin. 2023. ViaLin:
Path-Aware Dynamic Taint Analysis for Android. In Proceedings of the
31st ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’23), December 3–9,
2023, San Francisco, CA, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3611643.3616330

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00
https://doi.org/10.1145/3611643.3616330

1 INTRODUCTION

Taint analysis [42, 43] is a type of information flow analysis tech-
nique that reasons about the propagation of sensitive data through
the program execution. Taint analysis has many applications in
security, e.g., for identifying information leakages, injection flaws,
and cross-site scripting vulnerabilities [10, 17, 19, 23, 30, 46]. It
is also applied in program understanding, software testing, and
debugging activities [14, 29, 32].

Due to the increased popularity of mobile software, numerous
static and dynamic taint analysis techniques for mobile applica-
tions (or apps, for short) were recently proposed. These techniques
are used to facilitate different types of application analysis, in-
cluding identification of injection vulnerabilities and information
leakages [15, 24, 37]. Static taint analysis techniques [10, 21, 47] con-
sider all possible paths that data can flow through without running
the apps. Yet, recent studies [39, 53] show that existing static taint
analysis tools do not scale to applications of realistic size and com-
plexity. They also have difficulties analyzing several generic and
Android-specific language constructs, such as reflection, dynamic
code loading, and Android callbacks and framework methods.

Dynamic taint analysis techniques have access to such runtime
information and thus became a practical alternative to static ana-
lysis, despite their own disadvantages, such as the inability to reason
about behaviors that were not triggered at runtime and the need to
keep a low runtime overhead (Android simply kills slow apps). Taint-
Droid [19] is probably the first dynamic taint analysis technique
implemented for Android; it modified the Dalvik Virtual Machine
to accurately track information flows while keeping a low execu-
tion overhead. Subsequent work, such as Taint-ART [45], further
improves the efficiency of the analysis, while also re-implementing
it for the new ART runtime.

To keep the runtime overhead low, dynamic taint analysis tech-
niques typically assume a one-bit taint mark for each tracked infor-
mation source, such as device id, location, and sensitive input data.
They propagate the marks through the execution of the program,
raising an alert when marked data reaches a sensitive sink, such as
an API that sends data out from the device. Marks are typically held
in a 32-bit vector tag (i.e., one integer) attached to each program
variable. Such design ensures that taint marks do not occupy too
many processor registers, which would slow the execution down.

One limitation of this design is that it allows at most 32 differ-
ent taint marks, with a non-linear performance degradation when
increasing the number of tracked taints. An even more important
limitation is that this design only allows the techniques to report
flow endpoints, i.e., the sources and sinks involved in a flow. The
techniques do not capture and cannot report the taint path, i.e., how
the information propagates from sources to sinks. Finding such
paths manually is a challenging yet necessary task, e.g., to check
whether the information was properly handled before it was re-
leased. Our experiments show that taint paths extracted from 16 real

https://doi.org/10.1145/3611643.3616330
https://doi.org/10.1145/3611643.3616330
https://doi.org/10.1145/3611643.3616330

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Khaled Ahmed, Yingying Wang, Mieszko Lis, Julia Rubin

 1 class AppActivity {
 2 String info;
 3 String getUserInfo() {
 4 String input1 = getUserInput(); //source1
 5 String input2 = getUserInput(); //source2
 6 Location loc = getLocation(); //source3
 7 String size = input1.getLength();
 8 String lang = loc.getLanguage();
 9 String data = size + lang;
10 setInfo(data);
11 sendInfo();
12 Log.d(input2);
13 }
14 void setInfo(String str) {
15 this.info = str;
16 }
17 String getInfo() {
18 String val = this.info;
19 return val;
20 }
21 void sendInfo() {
22 String data = getInfo();
23 sendToInternet(data); //sink
24 }}
25 void start(){
26 AppActivity a = new AppActivity();
27 a.getUserInfo();
28 a.<more code…>;
29 }

Figure 1: An Example Application.

Android applications contain more than 57 code-level statements,
on average, and span more than 14 methods, on average.

Consider, for example, the simplified (pseudo-)code snippet in
Figure 1. The method getUserInfo() (lines 3-13) is triggered when
the app execution starts (lines 26-27), to collect information about
the user and store it in a field called info (line 2). Specifically, the
method reads two input values provided by the user (lines 4-5),
e.g., the username and password specified in different textual input
boxes, and the user location (line 6). However, instead of storing
these values directly, it only extracts the size for the first input
(line 7) and the language spoken at the current user location (line 8).
It concatenates and stores these values in the info field (lines 9-10,
14-16) and sends the value of this field out to the internet (lines 11,
17-24). Furthermore, the method writes the value of the second user
input, input2, into a log file stored on the device (line 12).

While existing dynamic taint analysis techniques will correctly
report that there is a flow of sensitive information from the user
and location data into the sink in line 23, they do not report the
exact flow path, making it difficult for an analyst to inspect how the
information flows between sources and sinks, e.g., to understand
that only the size of the user input and the language spoken in a
particular location were released and decide whether that consti-
tutes a violation of user privacy. Moreover, to keep the size of the
taint tag small, the techniques only track the type of information
being released and do not distinguish between code statements in
which the information is obtained. For example, they cannot deter-
mine which of the user-provided information is leaked, username
or password, making it even harder to analyze the identified flows
and/or build other types of analysis on top of these tools.

Other variations of dynamic information flow analysis, e.g., ap-
proaches based on dynamic forward slicing [35, 44], could, in prin-
ciple, report path-level information. Yet, these existing techniques
suffer from low efficiency when applied to large software, cannot ef-
fectively separate paths when simultaneously tracking information
from multiple different sources, and are not designed to consider
specifics of the Android platform (see Section 8 for more details).

To fill this gap, we propose the first dynamic taint analysis ap-
proach for Android that accurately tracks and reports detailed,
statement-level taint path information without inducing a substan-
tial application slowdown. We refer to our approach as ViaLin (for
routing and linking source to sink information). Instead of attach-
ing a taint mark to each information source and propagating these
marks through data flows, as done by the classical taint analysis
approaches, ViaLin keeps a lightweight data structure (up to five
integer variables in most cases) that points to elements that hold in-
formation about previous propagation steps. That is, ViaLin treats
taint propagation as a sequence of elements representing taint prop-
agation steps. At a sink, it traverses this sequence to report both
the propagation path and the source(s) involved in the paths. This
design leads to a more efficient management of memory, allowing
the operating system to garbage-collect taint marks that can no
longer lead to any sink. It also allows ViaLin to track any number
of taint sources without any implementation changes. Section 2
further illustrates of how ViaLin operates and how it compares
with existing dynamic information flow analysis approaches.

We implemented ViaLin by extending the Android Runtime
and evaluated it on a set of benchmarks and on 16 large Android
applications from the Google Play app store. We compare the paths
extracted by ViaLin to those extracted statically by FlowDroid
for the benchmark apps and those extracted by a human expert
for the Google Play apps. To evaluate the overhead of the path
collection functionality introduced by ViaLin, we compare it to our
own re-implementation of the “classical” dynamic taint analysis
approach that allocates a one-bit mark for each tracked taint source,
as was done in TaintDroid. We had to re-implement TaintDroid on
top of our taint analysis infrastructure as the original TaintDroid
implementation does not support the current Android architecture.
We refer to our re-implementation as TD+.

Our evaluation of ViaLin shows that it can accurately identify
taint flows and their corresponding paths, with only a few false
positive and false negative results. As with other taint analysis
approaches, the false-positives are due to array, file, and parcel
over-tainting while false-negatives are due to the lack of support for
native code and implicit flows. Yet, our evaluation shows that paths
reported by ViaLin can help reveal security vulnerabilities and
malicious handling of user-sensitive information in large Android
apps. The runtime and memory overhead induced by the tool in
a typical use is 39.8% and 7.3%, respectively, which we believe is
acceptable, given the extra functionality that it provides.
Contributions. This paper makes the following contributions:
1. It proposes a novel context-, field-, flow-, and path-sensitive
dynamic taint analysis approach that captures the entire taint prop-
agation path, not only its endpoints.
2. It implements the approach in a tool named ViaLin and empiri-
cally evaluates its accuracy and overhead on a set of benchmarks
and on large Android applications from the Google Play store.
3. It shows the practical usefulness of ViaLin in identifying security
vulnerabilities and malicious behaviors in large Android apps.
4. It makes our implementation of ViaLin, the “classical” dynamic
taint analysis approach TD+ implemented on top of the same in-
frastructure, and all our experimental data publicly available to
support future work in this area [8].

ViaLin: Path-Aware Dynamic Taint Analysis for Android ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

 3 String getUserInfo() {
 4 String input1 = getUserInput();
 4T int input1T = 0b0001;
 5 String input2 = getUserInput();
 5T int input2T = 0b0001;
 6 Location loc = getLocation();
 6T int locT = 0b0010;
 7 String size = input1.getLength();
 7T int sizeT = input1T;
 8 String lang = loc.getLanguage();
 8T int langT = locT;
 9 String data = size + lang;
 9T int dataT = sizeT | langT;
10 … }
21 void sendInfo() {
22 String data = getInfo();
22T int dataT = valT;
23T if (dataT != 0){report(data, dataT);}
23 sendToInternet(data); //sink
24 }}

 3 String getUserInfo() {
 4 String input1 = getUserInput();
 4T Taint input1T = injectT(4, null, null);
 5 String input2 = getUserInput();
 5T Taint input2T = injectT(5, null, null);
 6T Location loc = getLocation();
 6T Taint locT = injectT(6, null, null);
 7 String size = input1.getLength();
 7T Taint sizeT = propagateT(7, input1T, null);
 8 String lang = loc.getLanguage();
 8T Taint langT = propagateT(8, locT, null);
 9 String data = size + lang;
 9T Taint dataT = propagateT(9, sizeT, langT);
10 … }
21 void sendInfo() {
22 String data = getInfo();
22T int dataT = valT;
23T checkT(dataT);
23 sendToInternet(data); //sink
24 }}

(a) TaintDroid

3 String getUserInfo() {
4 String input1 = getUserInput();
 4T int input1T = 0b0001;
 5 String input2 = getUserInput();
 5T int input2T = 0b0001;
6 Location loc = getLocation();

 6T int locT = 0b0010;
7 String size = input1.getLength();

 7T int sizeT = input1T;
8 String lang = loc.getLanguage();

 8T int langT = locT;
 9 String data = size + lang;
 9T int dataT = sizeT | langT;
10 … }
21 void sendInfo() {
22 String data = getInfo();
22T int dataT = valT;
23T if (dataT != 0){report(data, dataT);}
23 sendToInternet(data); //sink
24 }}

 3 String getUserInfo() {
 4 String input1 = getUserInput();
 4T Taint input1T = injectT(4, null, null);
 5 String input2 = getUserInput();
 5T Taint input2T = injectT(5, null, null);
 6 Location loc = getLocation();
 6T Taint locT = injectT(6, null, null);
 7 String size = input1.getLength();
 7T Taint sizeT = propagateT(7, input1T, null);
 8 String lang = loc.getLanguage();
 8T Taint langT = propagateT(8, locT, null);
 9 String data = size + lang;
 9T Taint dataT = propagateT(9, sizeT, langT);
10 … }
21 void sendInfo() {
22 String data = getInfo();
22T int dataT = valT;
23T checkT(dataT);
23 sendToInternet(data); //sink
24 }}

(b) ViaLin

#5

input2T

p1

p2

#4

input1T

p1

p2

#7

sizeT

p1

p2

#6

locT

p1

p2

#8

langT

p1

p2

#9

dataT

p1

p2

#15

this.infoT

p1

p2

#18

valT

p1

p2

#10

dataT

p1

p2

#22

dataT

p1

p2

(c) Taint Structure Generated by ViaLin.

Figure 2: Taint Tracking for the Example in Figure 1.

2 VIALIN BY EXAMPLE

In this section, we use the example in Figure 1 to illustrate how
ViaLin operates and how it compares with existing, “classical” dy-
namic analysis approaches. We leave a detailed discussion about
the design choices made, our memory management optimization,
and our handling of Android-specific constructs to later sections.

Figure 2a shows the implementation of the getUserInfo() and
sendInfo() methods, augmented with the sketch of the code that
tracks taint tags in the “classic” way, as implemented by TaintDroid.
There are two types of taint sources in this example, which are
tracked by TaintDroid using two taint marks: 0b0001 for the in-
formation coming from the user input and 0b0010 for the location
data. To ease presentation, we show the marks in a 4-bit rather than
32-bit taint tag vector.

The taint tracking code is injected between the original code
lines, i.e., line 𝑖𝑇 (in grey) for each original line 𝑖 . For example, in
line 4𝑇 , a new taint tag input1T is created to track the taints of
the variable input1. The tag is associated with its corresponding
variable by name; it is initializedwith the taint mark for the accessed
information source – 0b0001, in this case.

For each code instruction, taint marks are propagated from the
used to the defined variables. For example, in line 9𝑇 , the taint tag
dataT tracking the taints of the variable data is assigned all taints
of the variables size and lang by unifying their corresponding
taint tags. At the sink, the taint tag of the released variables is
checked and, if not empty, the tool raises an alert reporting the
taint marks that reached the sink, as done in line 23𝑇 . In this case,
the tool just reports two taint sources: user input and location data.

Figure 2b shows the alternative instrumentation performed by
ViaLin. Instead of tracking taint tags as bit vectors, it uses an object
Taint, which contains three fields: an id of the code instruction
that defines the tracked variable and two pointers, p1 and p2, which
point to the Taint objects tracking taints of variables used in the in-
struction. Figure 2c shows a schematic representation of the created
graph structure, which allows ViaLin to report both the sources
of the taint and the propagation path. Two pointers are sufficient
in most cases as Java bytecode uses three-address instruction com-
mands; exceptions to this format are discussed later in the paper.

More specifically, our instrumentation uses three operations:
injectT, propogateT, and checkT. The injectT operation creates

a new Taint object each time a taint source is accessed and asso-
ciates it with the corresponding defined variable (see lines 4𝑇 , 5𝑇 ,
6𝑇). The propogateT operation creates a new Taint object for the
defined variable and propagates the taint from the used variables
by setting the pointers p1 and p2 accordingly. For the example in
line 9𝑇 , a new Taint object dataT is created and the pointers p1
and p2 are set to point to sizeT and langT, which track the taints
of size and lang.

At a sink, the checkT operation traverses the data structure start-
ing from the released variables, to identify and report the sources
involved in the information release, if any, and the propagation
path (see line 23𝑇). The graph structure in Figure 2c illustrates this
process: it shows that the taint for the data variable accessed in
line 23 arrives from both the user input input1 in line #4 (via the
path 4→7→9→10→15→18→22→23) and the location source in
line #6 (via the path 6→8→9→10→15→18→22→23). The graph
also shows that input2 in line #5 does not flow to any sink.

In the remainder of the paper, we give the necessary background
information and describe our implementation of ViaLin. We then
discuss our experimental setup and evaluation results.

3 BACKGROUND

The Android System. The Android operating system is a software
stack architecture built on top of the Linux kernel. Android apps
execute in the topmost architecture layer. They call APIs from the
Java framework layer, which provides an abstraction for interfacing
with the device hardware and sensors. The Android Runtime (ART)
layer compiles apps and the Java framework code into native code
using the dex2oat compiler; the native code is then executed by the
ART. Apps and the Java framework code can also call native code
directly through the Java Native Interface (JNI).

Each app is run in its isolated sandbox. Apps interact with one
another through parcels – a message-passing construct that is seri-
alized by the system and transported between apps. In-app commu-
nication, between different app processes, can also rely on parcels.
Apps may also store files on the persistent storage of the system.
Android Memory Management. Any memory an app modifies,
e.g., by allocating new objects, is managed by the ART in RAM. An
app can release memory by releasing object references that it holds,
making the memory available to the garbage collector. Garbage
collection events are triggered by the ART and work in two phases.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Khaled Ahmed, Yingying Wang, Mieszko Lis, Julia Rubin

The first phase marks all objects that can be accessed by the app in
the future. It starts by collecting the roots: all in-scope variables,
local variables on the stack, static variables, and active threads.
It then traverses all reachable objects from the roots and marks
them as visited. In the second phase, the garbage collector frees
non-marked objects from memory, reclaiming the resources used
by those objects. In Figure 1, if garbage collection is executed after
line 27, it will use the variable a as the root. It will mark this variable
and its field, a.info, as visited and release all other variables, e.g.,
input1 and input2 defined in method getUserInfo(), as they are
no longer reachable in or after line 28.
Dalvik Bytecode. Android-native apps are written in either Java
or Kotlin; they are compiled into Dalvik executable bytecode (dex),
stored in an apk package. Each Dalvik bytecode method has a fixed-
size stack frame that consists of a particular number of registers
(specified by the method) as well as any adjunct data needed to
execute the method, e.g., program counter.When used for bit values,
such as integers and floating point numbers, registers are considered
32 bits wide. Adjacent register pairs are used for 64-bit values.When
used for object references, registers hold exactly one such reference.

Dalvik employs three-address instructions; each instruction has
a single opcode, e.g., addition, and up to three operand registers.
An instruction may assign a value to at most one operand register
and use the two other registers as sources. For example, r3=r1+r2
is encoded as add-int r3, r1, r2. Some instructions do not assign
any operands, e.g., if-eqz A, Offset, which checks if the value
in register A is zero and branches accordingly to the Offset.

An exception to the three-address instruction format is the in-
voke instruction for method calls: it uses up to five operands repre-
senting method parameters. For methods with more than five pa-
rameters, the invoke/range instruction uses two registers, r1 and
r𝑛 , and treats all registers between r1 and r𝑛 as parameters, inclusive.

Even though the example in Figure 2b is written as Java-style
code, it is actually close to the bytecode format and uses three-
address instructions; the analysis described in this paper is per-
formed on bytecode rather than Java source.
Statements and Statement Instances. For simplicity of presenta-
tion, we refer to a bytecode statement in line 𝑖 as 𝑠𝑖 i.e., saying that
input1 is defined in statement 𝑠4. Each bytecode statement can be
triggered multiple times during the app execution, e.g., in multiple
iterations of a loop or in different calls to a method; we refer to
each individual execution of a statement as a statement instance
and denote the 𝑗 th execution of a statement 𝑠𝑖 as 𝑠

𝑗
𝑖
. For example,

the first execution of 𝑠4 is 𝑠14 .
Data-flow Analysis and Taint Paths. Data-flow analysis is the
process of collecting information about the way variables are de-
fined and used in the program. For each program statement, we
say that the assigned operand is defined in the statement and the
source operands, if any, are used in the statement. We say that there
exists a data flow from the statement instance 𝑠 𝑗

𝑖
to the 𝑠𝑚

𝑘
through

variable 𝑣 if and only if 𝑠 𝑗
𝑖
assigns a value to 𝑣 and 𝑠𝑚

𝑘
uses this

value. For example, there is a data flow from 𝑠14 to 𝑠
1
7 through the

variable input1.
A data flow graph is a graph whose nodes are statement instances

and edges are data flows between statement instances (not neces-
sarily over the same variables). There might be multiple data flow

paths (which we refer to as routes) between a pair of statement
instances, e.g., due to dependencies induced by multiple variables.

In taint analysis, statements defining sensitive data, e.g., user
input, location, are marked as information sources; protected state-
ments, where the information should not propagate, e.g., sent to
the internet, are defined as information sinks. A taint analysis tech-
nique is then applied to identify data flow graphs between pairs of
taint source and sink instances.

In our example, 𝑠14 → 𝑠17 → 𝑠19 → 𝑠110 → 𝑠115 → 𝑠118 → 𝑠122 → 𝑠123
is a taint flow graph between 𝑠14 and 𝑠

1
23. In this case, it only contains

a single route. For simplicity and usability, it can be reported at
a statement level, without including information about statement
instances, as in the example in Section 2.

4 APPROACH

At a high-level, ViaLin is implemented as an instrumentation pass
in the Android Open Source Project, which is conducted at app
installation time. ViaLin obtains as input application bytecode and
a list of source and sink APIs. It then injects the taint tracking
instrumentation, which:
1. Identifies statements that use any of the source APIs and injects
taints at these statements (e.g., line 4𝑇 in Figure 2b);
2. Injects the taint propagation logic to track taints in assignments,
method calls, native method calls, files, and parcels (e.g., line 9𝑇);
3. Identifies statements that use any of the sink APIs and injects
taint checking and reporting logic (e.g., line 23𝑇).

The instrumented code is further compiled by the dex2oat com-
piler and executed in ART. Unlike other approaches that inject the
instrumentation in the dex2oat compiler optimization phases [13,
45], our approach of instrumenting ahead of dex2oat allows the
compiler to optimize the inserted taint propagation logic in tandem
with the original app code. Furthermore, we apply taint propagation
instrumentation to the Java framework bytecode, which is compiled
and optimized when building the system, not at runtime.

When a statement instance containing a sink is about to execute,
ViaLin checks if tainted information reached the sink from at least
one of the sources, and if so, reports taint propagation paths from
all sources reaching the sink.

We now discuss each of these steps in more detail. We start by
describing our approach for storing taint tags in memory.

4.1 Taint Tags

We allocate a taint variable (a.k.a. taint tag) to track taint for each
source statement. This taint variable is an instance of the Taint
class, described in Section 2. Then, for each tracked Java construct,
such as a local variable, field, instance field, method parameter and
return variable, file, and parcel, we allocate another Taint instance,
if required by the taint propagation rules discussed below.We define
a taint map function T, which maps the tracked Java construct to
its corresponding taint tag.

The scope of the allocated taint tag is the same as the scope of
the tracked object. That is, for local variables the taint variable
is allocated in the scope of the method, doubling the number of
registers allocated in the method stack frame. For the example in
Figure 2b, loc𝑇 is the taint tag associated with the loc variable
(line 6); its scope is the same as the scope of the tracked object, i.e.,
the getUserInfo method.

ViaLin: Path-Aware Dynamic Taint Analysis for Android ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

While techniques such as TaintDroid [19] interleave the taint
tags with the original registers for spatial locality, this requires a
modification to the Dalvik virtual machine instructions. For exam-
ple, an instruction that reads a long variable from register r1 expects
the second part to be in r2. Interleaving taint tag references with the
original variables means that such instruction has to be modified to
read the second part from r3 instead of r2. Instead, we opted to add
all the taint tag reference registers after all the original registers in
the stack frame. We rely on the dex2oat compiler and optimizer to
correctly allocate original and taint tag Dalvik registers to reduce
register spilling and expensive memory accesses. That is, a taint
tag of a local variable allocated at register r𝑛 within a method with
a total of𝑚 registers, is r𝑛+𝑚 . The left-hand side of Figure 3 shows
the taint tag allocation for the method setInfo of Figure 1: the first
two registers are allocated for the receiver this and the variable
passed as a parameter str. The next two registers are allocated for
the taint tag references of this and str, respectively.

Taint variables for fields are defined as additional fields of the
class and have the same scope as the tracked field. Likewise, static
fields, which are shared by all instances of the class, are allocated
an extra static field in the class’ metadata to store a reference to
the taint tag of the field, and, thus, it is also shared by all instances
of the class. For example, the right-hand side of Figure 3 shows the
allocation of the info𝑇 taint tag mapped to the info field in an
instance of AppActivity.

For scalability, we allocate a taint tag for the entire array, rather
than tainting each entry of the array separately. This choice may
cause false positives but offers lower space and performance over-
head [19]. An array’s taint tag is, again, defined as the same scope
as the original array.

Parameter passing in Dalvik is done through registers; when
the stack frame of the called method is created, the parameters
are copied into registers in the newly created stack frame. One
approach to pass taint tags with parameters is to modify all method
signatures to include the taint tags as parameters and modify the
Dalvik calling convention to insert copies of taint tag references into
the stack frame. However, this approach breaks reflection [52] since
method signatures for a reflective call target may not be available
at the time of instrumentation. Thus, we follow the approach by
TaintMan [52], adding a global taint tag array, stored as an instance
field in the Thread class (thus, each thread gets its own separate
array). At the caller, taint tags of method parameters are placed in
order in the array; the callee copies the taint tag references from
the array and places them in local registers. Similarly, the taint
tag reference of the returned variable is placed in the array by the
callee and is copied by the caller, making the analysis performed
by ViaLin context-sensitive.

The center part of Figure 3 shows the taint tag array for the
thread executing the code in Figure 1. The first cell in the array

0
1

// return
thisT

dataT 2r2 = thisT

r3 = strT

r1 = str
r0 = this

setInfo registers main thread’s taint tag array

// header
info
infoT

Object instance of
AppActivity

… …

Figure 3: Taint tag storage (shaded) for local variables (left),

parameter passing and returns (center), and fields (right).

is reserved for the method return or thrown exception and the
following cells store passed parameters in their order.

Files are stored in the system’s persistent storage rather than
within an app. To track taints for files, we create a taint tag file with
the same path as the tainted file but with an extra extension (.taint).
The taint tag file stores a serialized version of the entire taint data
flow graph arriving at the file. We modified the file copying Java
APIs to copy the (.taint) file when propagating taints. However,
our implementation does not support cases when files are copied
using shell commands or native code.

Parcels are serialized prior to transmission. Thus, a parcel’s
scope may change after it is serialized, e.g., from the scope of one
activity class to another. We modified the parcel class in the frame-
work to allocate an extra field for the taint tag of the parcel, which
gets serialized with the parcel data and de-serialized at the new
scope of the parcel.

4.2 Taint Injection and Propagation

The taint injection function, injectT, simply allocates a new taint
tag for each variable defined at a statement instance that invokes
a source API. To propagate taints, the propagateT function first
checks if at least one of the used registers in a statement instance
is tainted, i.e., its corresponding taint tag is not null. If so, the
function creates a new taint tag and points to the taint tags of the
used registers.

Detailed taint propagation rules for assignments, method calls,
returns, and exceptions are defined in our online appendix [8].
For example, for statements that assign a constant to a register,
propagateT clears the taint tag of the register (by assigning it
the null value). For assignments with one used register, it checks
whether the taint tag of the used register is not null and, if so, creates
a new taint tag with p1 pointing to the taint tag of the used register
and p2 being null. Assignments with two used variables, returns,
and exceptions, are handled similarly. Method calls are treated
as a sequence of parameter copies, mapping each callee formal
parameter to the corresponding variable in the caller function.

Field assignments do not propagate the taint to the entire object
that contains the field, thus ensuring our analysis is field-sensitive.
However, instructions that read instance fields propagate the taint
tag not only from the field itself but also from its enclosing object
since the object could be tainted but its fields may not be, e.g., by
being assigned the return of a source statement. In this case, all
sub-fields of the object are considered tainted.

For inserting variables into arrays, we propagate the taint from
two registers: the register of the inserted variable and the array
itself as it could already be tainted by a previous insertion. When
retrieving variables from an array, we propagate the taint from the
array to the variable’s register.

Each parcel and file can be tainted by numerous taints: a parcel
can carry several tainted variables within its internal array and
multiple taint sources can be written to a file. As our propagation
rules can propagate taints from a maximum of two variables, we
treat each write to a file or a parcel in a similar way we treat arrays:
we propagate both the prior taint of the entire file/parcel and the
taint of the written variable, accumulating the taints of all variables
written to the file or parcel.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Khaled Ahmed, Yingying Wang, Mieszko Lis, Julia Rubin

ViaLin injects the taint propagation code into the Dalvik byte-
code and thus does not track taint propagation in native code.
Instead, we model framework native calls using FlowDroid’s taint
wrappers [10]: a set of rules that define how taint is propagated
within a method. For example, for the method call ret=a.f1(b,c),
a rule will indicate that the taint only propagates from the input
parameter c to the return value, but not to the receiver object a. We
thus treat this call in a similar way to treat an assignment ret=c.
We inject the taint propagation logic at the call site of each modeled
native call. For methods not covered by FlowDroid’s taint wrappers,
e.g., custom methods defined in the app, we use the generation taint
wrapper strategy, conservatively propagating the taint from all
arguments and the receiver to the receiver and the return values.
For example, for the method call ret=a.f2(b,c), is treated as the
set of assignments a=b, a=c, ret=a.

4.3 Taint Checking

The taint check function, checkT, is injected at every statement
instance that invokes a sink API. It obtains as input taint tags of
all parameters of the sink. For each non-null tag, i.e., when the
corresponding parameter is tainted, checkT uses depth-first search
to traverse all reachable taint tags, building the data flow graph
between the source and sink statement instance pair.

As discussed in Section 3 and also by Arzt [9], there may be
more than one route between a given source and sink statement
instance pair in a data flow graph. Reporting such a graph in full,
at a statement instance level, does not add any additional value for
the human analyst and might even overwhelm the analyst due to
an exponential number of paths caused by loops, repeated methods
calls, etc. Therefore, similarly to FlowDroid [9, 10], we chose not to
report the full data flow graph in ViaLin, though it can be explicitly
enabled, if needed. Instead, we report all statements of the graph in
the order of their execution. We refer to this report as a taint path.
The evaluation section contains a more detailed discussion on the
practical implication of this decision.

4.4 Memory Management

ViaLin allocates taint tags in the scope of the tracked variable. How-
ever, these tags are not freed by the garbage collector when the
variable gets out of scope, as long as they are reachable from taint
tags of other, in-scope variables. This ensures that taint propagation
paths are reachable even if variables on the path are garbage col-
lected. The data structure is automatically pruned once the tracked
taint propagation path can never reach a sink.

For the example in Figure 1, if a garbage collection event is
triggered after line 27, all local variables of methods other than
start are garbage collected. However, the taint tags of all but the
variables in lines 18 and 22 remain in memory. That is because the
variable a and its info field are still live objects and thus, the taint
tag of the info field is still in scope. This tag points to the tag of an
object in line 10, which points to the tag of an object in line 9, etc.,
as shown in Figure 2c. The remaining tags are garbage collected
after the execution of the start method terminates.

5 EVALUATION METHODOLOGY

In our evaluation, we aim to investigate the accuracy and perfor-
mance of ViaLin by answering the following research questions:

RQ1 (Accuracy) How accurate is ViaLin in identifying
RQ1.1 (Detection) taint flows?
RQ1.2 (Path Construction) path information?

RQ2 (Performance) What is the impact of ViaLin on
RQ2.1 (Time Overhead) app execution time?
RQ2.2 (Memory Overhead) consumed memory?

RQ3 (Utility) How useful is ViaLin in practice?

5.1 Subject Applications

We evaluated ViaLin on three sets of applications. The full list of
applications that we used, information about their size, the list of
expected and identified paths, and other relevant information are
available in our online appendix [8].
DroidICCBench. To answer RQ1, we used popular benchmarks
created specifically for evaluating the effectiveness of taint-analysis
tools for Android: DroidBench v3.0 [2, 10] and ICC-Bench [3, 47].
These benchmarks, combined, consist of 217 apps. Even though
the benchmarks were developed mostly to challenge static taint
analysis tools, many of the cases are also relevant to dynamic ana-
lysis, e.g., array over-tainting, sensitivities, and more. We had to
exclude eight apps for which we cannot reliably trigger the flows
in an automated way, e.g., applications for which a taint flow is
triggered only when the phone is running out of memory (from
the onLowMemory callback). Moreover, as the benchmark apps were
developed for an older Android API (level 19), where permissions
to run any sensitive API are given at installation time, we modified
the apps to request permissions using the approach of the newer
Android versions. In the end, we used 209 apps in our evaluation,
and we refer to them as DroidICCBench.
Sources and sinks. A set of sources and sinks for each application
in DroidICCBench is defined in the application header file. In total,
there are 5 sources and 11 sinks used across different benchmarks.
To increase automation, we configured ViaLin to use this combined
list of sources and sinks for all apps, as was done in prior work [53].
We also used the updated set of expected flows, which corresponds
to this combined set of sources and sinks. Finally, we manually ana-
lyzed each benchmark application to extract the path, at statement
level, corresponding to each flow.
GPBench. To further evaluate ViaLin in a more realistic setup, and
answer both RQ1 and RQ2, we used a benchmark of Google Play
applications fromZhang et al. [53]. To construct this benchmark, the
authors systematically collected 19 large popular apps with login
functionality from the Google Play store. They deem the benchmark
representative as the average dex size of apps in their benchmark
is 15 MB while their reported average size of 5,500+ top apps in
Google Play is 11.6 MB. The authors manually identified at least
one login-related flow in each app, and reported sources, sinks, and
paths of these flows. They further used the benchmark to evaluate
the accuracy of static taint analysis tools, manually analyzed all
flows reported by the tools, and augmented the expected results
with the identified true-positive flows. Yet, this set of manually
marked flows is still partial: there could be additional flows not
found manually or by the static analysis tools.

We excluded from our study three out of the 19 apps, as their
backend servers were non-functional at the time of writing and we
thus could not execute them dynamically. We used the remaining

ViaLin: Path-Aware Dynamic Taint Analysis for Android ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

set of 16 apps, which we refer to as GPBench, for our evaluation.
As manually identifying all expected flows in large real apps of
GPBench is a very challenging task, we used the set of flows marked
by the authors of the benchmark, together with their established
expected paths, as a partial expected result for ViaLin.

The only other publicly available benchmark with real apps and
marked flow paths we are aware of is TaintBench [6]. However, we
could not use it for our evaluation as the benchmark contains old
malware samples whose servers were taken down and is thus not
suitable for dynamic analysis.
Sources and sinks. We configured ViaLin to use two sets of sources
and sinks for the GPBench apps. The first, which we refer to as
the short list, was defined by Zhang et al. [53] for each individual
app, e.g., EditText.getText() for obtaining the password and
HttpURLConnection.getResponseCode() for sending it to the in-
ternet. We use this configuration to assess the accuracy of the tool.

Then, to check scalability and further stress the tool, we config-
ured ViaLin to run on the same set of apps using a larger set of
taint sources. Specifically, we augmented our short list of sources
with an additional list of taint sources used by FlowDroid [10]. The
combined list includes 97 sources, out of which 23 are executed in
at least one app and we adopted them for our analysis. We refer to
this list as the long list of sources and sinks.
Fake WhatsApp client. To help answer RQ3, we additionally
browsed blog posts of major security companies, identifying posts
that (a) describe information-stealing Android malware and (b)
provide clear characteristics allowing us to identify the described
malicious apks. As a result of this search, we identified a mod
WhatsApp client called YoWhatsApp [5]: a repackaged WhatsApp
client app that steals a user authentication key.
Sources and sinks. To identify the stealthy behavior of the app, we
configured ViaLin to use the key generation API, Curve25519Pro-
vider.generatePrivateKey, as a source and all APIs sending in-
formation to the internet as sinks.

5.2 Evaluation Methodology and Baseline Tools

To answer RQ1.1 (Detection Accuracy), we run ViaLin on: (1)
DroidICCBench applications, to compare the reported to the ex-
pected results. (2) GPBench-SL, denoting GPBench applications run
with the short list of sources and sinks. We use the results of these
runs to check whether the tool can detect the expected flows which
were manually marked by the GPBench authors. We also inspect
the number of reports produced by the tools, the number of distinct
paths it reports, and the properties of these paths, such as their
length and the number of different routes between source and sink
statements. (3) GPBench-LL, denoting GPBench applications ran
with the long list of sources and sinks. We use the results of these
runs to further inspect the quality of the produced paths.

To answer RQ1.2 (Path Construction), for the apps in DroidIC-
CBench, we compare paths produced by a static taint analysis tool
FlowDroid to paths produced by ViaLin. As FlowDroid does not
scale to analyze apps in the GPBench dataset [53], for the GPBench-
SL app, we compare the paths reported by ViaLin to those manually
identified by the authors of GPBench.

For RQ2.1 (Time Overhead) and RQ2.2 (Memory Overhead),
we run ViaLin on GPBench applications: first under the GPBench-
SL configuration that represents the “typical” use and, to further

stress it, on the GPBench-LL configuration. Furthermore, we used
our taint analysis infrastructure to re-implement the “classic” one-
bit mark taint analysis approach, as discussed in Section 2, which
we refer to as TD+. To fairly compare the results of both tools, we
run TD+ with the same configuration setup and execution script.
While the overhead of ViaLin is expected to be higher than that of
TD+ (as TD+ does not collect/report any path info), this baseline
comparison is performed to estimate the magnitude of the increase.
Due to possible differences in execution time and memory footprint
between different runs, we execute each experiment ten times on
each system and report the average reported scores of all runs.

We do not compare ViaLin with other dynamic taint analysis
tools for Android, e.g., TaintART, because our proposed idea is
orthogonal to that of other tools, which focus on improving the
efficiency of one-bit taint mark tracking, not on reporting taint
propagation paths. Moreover, the implementations of these tools
are either unavailable or major parts are missing. We also do not
compare ViaLin with dynamic taint analysis techniques outside
of the Android domain as we are not aware of any technique that
provides full statement-level path tracking.
ForRQ3, wemanually inspected the paths of the GPBench apps that
we analyzed, identifying vulnerabilities related to handling of user
credentials. In addition, we recruited two third-party developers
with more than two years of experience with security-related tasks
each. This experience includes reverse-engineering apps, security
protocols, and cryptographic protocols; penetration testing; and
participation in national and international cybersecurity competi-
tions. We provided both experts with the malicious YoWhatsApp
apk and the blog post describing its malicious behavior; we asked
them to identify and describe the key stealing code of the app and
to report on the time it took to perform the task. While expert #1
did not receive any additional information, we provided the taint
path describing the information stealing flow to expert #2. As a
follow up on the study, we also sent a questionnaire to expert #2, to
investigate (a) whether they believe the provided taint path helped
in completing the task; (b) the reason for the provided answer; and
(c) any suggestions for improvement of the tool.
Execution Scripts and Environment. As ViaLin is a dynamic
approach, we executed all apps in DroidICCBench andGPBench.We
manually traversed each app to collect its execution traces. Flows
in most of DroidICCBench apps are trivially invoked when an app
starts; for GPBench, we ensured to cover the login functionality
and traversed as much of the apps as possible afterwards. To ensure
our analysis is fair and repeatable, we recorded an execution script
for each app using the android-touch-record-replay tool [16] and
replayed these scripts in all stages of our evaluation, to run the
apps automatically. We perform all our experiments on the same
Pixel 2 XL (taimen) device running Android API level 28, version
8.0.0. The analysis of YoWhatsApp was performed by the security
experts manually, by reverse-engineering and inspecting the app.

6 RESULTS

6.1 RQ1.1 (Detection Accuracy)

Table 1 shows the results of ViaLin runs on the DroidICCBench
applications. Due to space limitations, we grouped all apps from
the same benchmark category into one row. For example, the first

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Khaled Ahmed, Yingying Wang, Mieszko Lis, Julia Rubin

Table 1: RQ1.1: Detection Accuracy on DroidICCBench.

ID Category # Apps Expected Reported TP FP Precision Recall F-Measure

1 Aliasing 4 1 1 1 0 100 100 100
2 Android Specific 14 10 10 10 0 100 100 100
3 Arrays And Lists 10 4 9 4 5 44.4 100 61.5
4 Callbacks 9 9 9 9 0 100 100 100
5 Dynamic Loading 5 3 3 3 0 100 100 100
6 Emulator Detection 15 16 13 13 0 100 81.3 89.7
7 Field And Object Sens. 7 2 2 2 0 100 100 100
8 General Java 25 20 20 20 0 100 100 100
9 Implicit Flow 6 6 0 0 0 100 0 0
10 Inter-App Comm. 11 25 25 25 0 100 100 100
11 Inter-Comp. Comm. 18 26 26 26 0 100 100 100
12 Lifecycle 23 22 22 22 0 100 100 100
13 Native 5 5 0 0 0 100 0 0
14 Reflection 9 9 9 9 0 100 100 100
15 Reflection ICC 10 21 21 21 0 100 100 100
16 Self Modification 4 3 0 0 0 100 0 0
17 Threading 6 6 6 6 0 100 100 100
18 Unreachable Code 4 0 0 0 0 100 100 100
19 ICC Handling 12 13 13 13 0 100 100 100
20 ICC Target Finding 7 15 15 15 0 100 100 100
21 Mixed 1 2 2 2 0 100 100 100
22 RPC Handling 4 4 4 4 0 100 100 100

Total 209 222 210 205 5 97.6 92.3 94.9

row includes four apps from the “Aliasing” category. The number
of expected flows in these four apps is 1 (column “Expected”), indi-
cating that some apps are rather designed to “confuse” the analysis
into producing false positive results.

As any dynamic approach, ViaLin generates a report every time
tainted data reaches a sink statement instance (column “Reported”).
We further count the number of unique statement-level paths that
the tool reports (there could be multiple paths with different state-
ments and/or statement instances between the same source and
sink statement pair). As apps in DroidICCBench are simple by de-
sign, in this benchmark, each sink statement is executed only once
and there is only one path between each source and sink pair. Thus,
the number of paths ViaLin reports is equal to the overall number
reports (in column “Reported”).

The “TP” and “FP” columns of the table show the breakdown of
reported flows to true positive and false positive results, respectively.
ViaLin has a very low false positive rate (and, thus, high precision):
out of the 210 reported flows, only five are false-positives, all in the
“Arrays and Lists” category, due to the over-tainting of arrays, i.e.,
tainting the entire array instead of its individual cells – a common
limitation of many taint analysis techniques.

There are also 17 false-negatives, 9 of which are due to the design
choice not to support implicit flows (categories #9 and #16). An-
other 5 false-negatives are in the “Native” category. While ViaLin
models some framework-related native calls, the DroidICCBench
apps have either the taint source or the entire path implemented
in custom native code, which ViaLin does not support. Finally,
3 false-negatives, in the “Emulator Detection” category, are due
to the evaluation limitation: these apps check for the presence of
Google Play services on the device, which we cannot install on top
of the Android Open Source build used for our prototype.

Overall, ViaLin achieves a high recall of 92.3% and an overall
F-Measure (a harmonic mean that balances precision and recall) of
94.9% on the DroidICCBench apps. This result is largely expected,
given that the benchmark apps were mostly designed to confuse
static rather than dynamic analysis techniques.

Table 2 shows similar information for GPBench-SL and GPBench-
LL runs of the tool, i.e., runs with the short and long list of sources
and sinks on the GPBench benchmark. As discussed in Section 5.1,

we do not have the complete ground truth for these large apps,
due to the sheer number of sources, sinks, and possible paths. Yet,
our experiment confirms that ViaLin can detect all expected flows
manually marked by the benchmark authors (columns “Marked
Flows” and “Marked Flows Detected”).

For the GPBench-SL, ViaLin produces additional 56 reports,
bringing the number of total reports to 86 in this configuration.
As in the case of DroidICCBench, all but two reports correspond
to a unique reported path – information of the highest interest to
the human analysis. In apps #3 and #12, the same sink statement is
triggered twice, resulting in two identical statement-level paths.

To gather insights about the correctness of the reports, two of
the paper authors independently sampled and inspected a subset of
the reported paths. They were able to confirm the majority of the
reports, observing only two false positive results, both in app #11,
due to over-tainting of a hashmap – a data structure backed by an
array. Such false positives were also observed in our DroidICCBench
evaluation and are shared by most taint analysis tools.

Interestingly, some of the reported paths “connect” the same
source and sink statements via different sequences of statements.
Column “Source-Sink Pairs” reports on the number of unique pairs
of source and sink statements, among all reported paths. For exam-
ple, in app #8, there are only two such unique pairs. However, there
are six types of information (email, password, first name, last name,
company name, and address inputs), which flow to the internet via
the two source-sink statement pairs.

Figure 4 is a simplified example of the code of this app.

1 String getValue(int id) {
2 return (findViewById(i)).getText();//source
3 }
4 void onClick(){
5 JSONObject o = new JSONObject();
6 o.put("Email", getValue(R.id.email));
7 o.put("Password", getValue(R.id.pwd));
8 ...
9 sendToInternet(o); //sink

10 }

Figure 4: Multiple Paths.

Its source statement (line
2) is located inside the
getValue(..) method,
which is triggered mul-
tiple times (lines 6, 7),
with different widget ids,
to obtain different types
of user input (unlike in
our motivating example in Figure 1, where the data from each wid-
get was obtained explicitly). This causes multiple reported flows to
have the same source and sink statements but different paths.

ViaLin can identify and report all such cases. Yet, without these
reports, when only using a dynamic tool that reports flow endpoints,
it would be difficult for a human analyst to identify all involved
paths manually, especially in large applications. Including more
source statements in the analysis, as was done in GPBench-LL,
further complicates matters: the difference between the number
of reported paths and just the number of unique source-sink pairs
becomes even more pronounced: 749-247=502.

Moreover, as shown in the table, the size of the paths averages
at 57.2 statements (max: 509), with 14.9 methods on a path, on
average (max: 156), spanning 7 different classes, on average (max:
70). ViaLin can help avoid the intensive manual labor involved in
detecting these paths.
Answer to RQ1.1: ViaLin accurately detects taint flows with only
a few false positives due to over-tainting of data structures and false
negatives due to implicit flows and native code. The paths reported
by ViaLin can help distinguish between different ways in which in-
formation can flow between the same source and sink statements.

ViaLin: Path-Aware Dynamic Taint Analysis for Android ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 2: RQ1.1: Detection Accuracy on GPBench.

ID

Marked

Flows

[53]

GPBench-SL GPBench-LL

Marked Flows

Detected

Reports Reported

Paths

Source-Sink

Pairs

Reports Reported

Paths

Source-Sink

Pairs

Stmts on Path Methods on Path Classes on Path

Min. Max. Avg. Med. Min. Max. Avg. Med. Min. Max. Avg. Med.

1 1 ✓ 5 5 3 29 16 11 7 105 28.9 23.5 1 25 5.3 4 1 7 2.6 2
2 1 ✓ 2 2 2 882 57 27 2 218 71.1 57 1 63 18.9 11 1 29 10.6 7
3 1 ✓ 2 1 1 7 7 4 5 69 25.5 26 1 9 5 4 1 5 3 3
4 1 ✓ 2 2 2 2 2 2 21 22 21.5 21.5 5 5 5 5 3 3 3 3
5 1 ✓ 4 4 3 17 16 5 10 212 71.5 67.5 3 30 12.4 9 2 13 5.6 5
6 1 ✓ 4 4 3 15 15 4 12 231 75.2 69 2 32 13.1 69 2 13 5.9 5
7 1 ✓ 4 4 3 7 7 3 2 95 57.2 69 1 22 10 9 1 10 4.3 3
8 1 ✓ 6 6 2 7 7 4 29 179 86.7 86 7 21 14 14 4 10 7 7
9 1 ✓ 12 12 4 1149 282 32 5 509 113.6 86.5 2 156 41 34.5 2 70 18 15
10 15 ✓ 21 21 21 30 30 29 10 67 34.9 22 4 22 10.6 7 4 13 6.7 4
11 1 ✓ 4 4 1 31 17 6 3 139 108.3 101 3 31 24.1 22 2 10 8.6 8
12 1 ✓ 4 3 3 4 3 3 4 5 4.7 5 2 3 2.7 3 2 3 2.7 3
13 1 ✓ 5 5 5 5 5 5 25 27 25.8 26 7 7 7 7 4 4 4 4
14 1 ✓ 2 2 1 148 88 16 2 108 31.4 32 1 40 11.5 11 1 19 5.7 6
15 1 ✓ 2 2 2 81 34 28 18 223 61.8 47 6 45 14.6 12 3 22 6.5 5
16 1 ✓ 7 7 7 280 163 68 5 206 97.9 109 4 72 33.2 33 2 35 17.6 17

Total 30 - 86 84 63 2694 749 247 - - - - - - - - - - - -
Avg. 1.9 - 5.4 5.3 3.9 168.4 46.8 15.4 - - 57.2 - - - 14.3 - - - 7 -

6.2 RQ1.2 (Path Construction Accuracy)

DroidICCBench. To evaluate the accuracy of path construction,
we compare the paths reported by our tool to paths reported by
FlowDroid – the only other tool that can produce taint propagation
paths for Android apps, albeit statically. Out of the 205 true-positive
paths reported by ViaLin on DroidICCBench, FlowDroid can iden-
tify and report 134. The remaining cases are challenging to analyze
statically due to Java- and Android-specific constructs, such as re-
flection, inter-component communication, and more [40, 53]. We
thus focused our comparison on the 134 paths found by both tools.

Our analysis, conducted by two authors of this paper, shows
that ViaLin can correctly identify most of the statements in taint
propagation paths. Out of 134 analyzed paths, 61 were identical and
73 were slightly different, i.e., contained extra or missing statements.
We identified several reasons for the differences, described below.

By design, ViaLin does not report object aliasing statements on
the path (55 aliasing statements overall, on 15 paths of 15 apps).

1 A a = new A();
2 B B = new B();
3 a.c = source();
4 b = a;
5 sink(b.c);

-

Figure 5: Aliasing.

Figure 5 shows an example: in line 3, a.c
is tainted. Line 4 aliases b to a and, thus,
the field b.c aliases the tainted field a.c.
Then, b.c reaches the sink in line 5. Vi-
aLin does not include the aliasing state-
ment in its path, reporting only statements
in lines 3 and 5, as it tracks the taint of the object field itself, not its
containing object. FlowDroid reports the aliasing statements as it
performs the analysis statically. Such reports could help the analyst
to better understand how the taint reaches the sink.

At the same time, we observedmore than 120 extra statements on
55 paths reported by FlowDroid but not ViaLin. These are related
to unneeded ‘return void’ in methods where tainted variables are
assigned (even though the return statements do not propagate any
tainted data), and extra method calls and lifecycle statements that
do not propagate any taints.

Finally, FlowDroid only reports a single witness for each path
between source and sink. That is, the tool aborts the path con-
struction after the first route for a given pair of source and sink is
found [9]. Due to that reason, FlowDroid paths contain only the
shortest possible route between the source and sink pair, which
causes it to miss statements on the pass. This occurred in three
paths from three different apps, shown in our online appendix [8].

GPBench. As manually inspecting all paths reported by the tool is
unfeasible, we focused on inspecting the 30 paths manually marked
by the authors of GPBench. For these paths, we also observed
cases of missing alias statements, as discussed for DroidICCBench.
We also encounter cases where the reported path includes extra
statements that do not propagate tainted data due to over-tainting
arrays and data structures backed by arrays, inflating the paths in
apps #1, #4, #10, and #11.

While inspecting the paths, we observed interesting cases where
the reported path can help analysts identify whether the informa-
tion was properly handled before being released. We discuss them
in more detail in Section 6.4.
Answer to RQ1.2: ViaLin accurately reports the majority of path
statements. It does not include aliasing statements and can include
extra statements related to operations on array-backed data structures.

6.3 RQ2 (Performance)

To evaluate the performance of ViaLin, we run it with both the
short and the long list of sources and sinks, i.e., for GPBench-SL
and GPBench-LL. The first configuration intends to represent the
“typical” use and the second – to stress the tool to run in a “heavy”
scenario: as the apps in the GPBench-LL configuration have 1520
source and 55 sink statement instances, on average, this represents
an upper bound of a reasonable scenario, where the analyst config-
ures the tool with many possible sources/sinks at once. We compare
the performance of the tool with the baseline execution of the app
on an unmodified Android build and with the execution for our
own re-implementation of one-bit taint tracking approach, TD+.
RQ2.1: Time Overhead. For each of the analyzed tools and con-
figurations, we run each app ten times. We collect the total CPU
execution time for each run from the /proc/{pid}/stat file and
average the times of all runs. We then compute the time overhead
w.r.t. the original execution, the overhead of ViaLin w.r.t. the origi-
nal execution, and the overhead of ViaLin w.r.t. the TD+.

Table 3 shows the results of this experiment, for both GPBench-
SL and GPBench-LL configurations. Columns “Max. Path Length”
and “Source Stmt Instances” show the maximal length of the re-
ported path for each app and the total number of source statement
instances for an app, respectively. These are used as indication of
“work” done by ViaLin: the number of source statement instances
indicate the amount of taint injected into the system since each

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Khaled Ahmed, Yingying Wang, Mieszko Lis, Julia Rubin

Table 3: RQ2.1: Time Overhead.

ID

Orig GPBench-SL GPBench-LL

TD+ ViaLin Max.

Path

Length

Source

Stmt In-

stances

TD+ ViaLin

Time (s) Time (s) Over-

head (%)

Time (s) Over-

head (%)

Overhead

vs. TD+ (%)

Time (s) Over-

head (%)

Time (s) Over-

head (%)

Overhead

vs. TD+ (%)

1 12.4 13.2 6.5 23.4 88.3 76.8 105 385 15.6 25.5 24.1 94.1 54.7
2 45.2 50.5 11.6 63.1 39.5 25 218 34 53.8 19 62.5 38.2 16.1
3 12.4 12.7 1.7 13 4.5 2.7 69 23 12.6 1.4 14.2 13.8 12.3
4 13.7 14.5 6.4 15.6 14.4 7.5 22 242 14.6 7.2 16.3 19.3 11.3
5 5.6 5.8 2.8 6.5 15.3 12.2 212 15 6 7.2 6.4 13.6 5.9
6 6.7 8 19.4 9 34.7 12.8 231 20 8.4 26.9 9.7 46.1 15.2
7 4.5 5 10.9 5.7 26.1 13.8 95 15 5 10.9 6.4 42 28
8 4.9 5.1 2.2 5.4 9.9 7.6 179 79 5.7 14.5 6 21.7 6.2
9 10.6 14.2 33.3 25.1 136.2 77.2 509 5528 16.5 55.3 40.2 278.4 143.7
10 9.3 10.2 10.3 11.6 25.2 13.4 67 17 10.3 11.5 11.5 23.8 11
11 25.3 27 6.6 28.5 12.8 5.7 139 13485 29 14.8 32.1 27.1 10.7
12 6.8 7.1 4 12.5 85 77.9 5 6 7.6 12.5 13 92 70.6
13 4.6 5 9.3 5.7 23.2 12.8 27 103 4.9 6.5 6 29.4 21.5
14 37.8 38.6 2.2 46.6 23.4 20.8 108 1188 40.4 6.8 43.3 14.8 7.4
15 15.9 20.9 31.3 29.4 84.7 40.7 223 318 21.2 33 40 151.7 89.2
16 6.6 6.7 1.1 7.5 13.8 12.6 206 2868 7.2 9.4 8.6 30.7 19.4

Med. 10 11.5 6.6 12.8 24.3 13.1 123.5 91 11.5 12 13.6 30.1 15.7
Avg. 13.9 15.3 10 19.3 39.8 26.2 150.9 1520.4 16.2 16.4 21.3 58.5 32.7

source statement instance produces at least one taint propagation
path that may reach a sink. Likewise, the length of the taint propa-
gation path is another indicator of the amount of taint propagation
that was maintained during the runtime of the app.

As expected, TD+ maintains a relatively low time overhead
in both setups: 10% and 16.4% on average for GPBench-SL and
GPBench-LL, respectively. This result is comparable with that re-
ported by the original TaintDroid implementation. The correspond-
ing overhead of ViaLin over the original run is 39.8% in “typical“
use and 58.5% in the “heavy” scenario. Interestingly, the median
of the execution time overhead is 24.3% and 30.1% respectively,
indicating that more than half the apps finish the execution in a
reasonable time. The highest overhead, for both TD+ and ViaLin is
in app #9, which has a high number of source statements instances
(5528) and the longest reported path (509 statements).
RQ2.2: Memory Overhead. To evaluate the memory overhead
of the tools, for each solution, we measure the Virtual Memory
Resident Set Size (VmRSS) which indicates the resident physical
memory. We sample VmRSS from the /proc/{pid}/status file
every second, then average all samples for each run. We then fur-
ther average the results among all runs. We compute the memory
overhead compared with the baseline execution in a manner similar
to that of the time overhead.

Our results show that the memory overhead induced by the tool
is relatively low: 7.3% and 9.4% on average, in “typical” and “heavy”
scenarios. This is largely due to the efficient memory management
strategy employed by ViaLin which allows the Java garbage collec-
tor to clean up objects which are no longer in the execution scope.
Due to space limitations, we include the full memory overhead
table in the online appendix [8].

Remarkably, in our setup, we did not notice any slowdown run-
ning the apps on a real device. We thus consider the overhead
induced by ViaLin acceptable, given the extra value it provides to
the user compared with existing dynamic taint analysis techniques.
Answer to RQ2: On average, ViaLin increases the execution time
by 39.8% and costs 7.3% more memory in a typical-use setup. This
overhead is still acceptable as makes it possible to execute applica-
tions on the device without any notable slowdown. The overhead
increases as the number of injected taints into the system increases.

6.4 RQ3 (Utility)

Analysis of GPBench apps. As discussed in Section 6.1, when
manually inspecting the information flows from the user-entered
password to the internet in the GPBench apps, we noted that paths

reported by ViaLin can help identify security vulnerabilities, such
as improper handling of sensitive data. Specifically, our analysis
identified a vulnerable app which exhibited insecure programming
practices: app #4 (10M+ downloads). In this app, a hardcoded JSON
Web Token (JWT) secret key was used to sign the password before
it is sent over the internet, which significantly increases the risk of
compromising the user’s privacy by an attacker [1, 4].

While this vulnerability was fixed in later versions of the app
(starting from version 4.3.3, released in October 2021, where the app
developers redesigned the authentication mechanism) it existed
in all app versions between September 2015 and October 2021, in-
cluding the version that we analyzed. Identifying flows of sensitive
information in the app, as enabled by ViaLin, could encourage
a dedicated review of the ways sensitive information is handled,
helping to eliminate vulnerabilities sooner.
Analysis of YoWhatsApp. Two experts reverse-engineered and
manually analyzed the malicious YoWhatsApp app, which steals a
user authentication key, allowing the malicious developer to take
control over victim WhatsApp accounts. Expert #1 performed the
analysis without using any information provided by ViaLin while
expert #2 received the taint path describing the information stealing
flow, as generated by ViaLin. While building a proper controlled
experiment with the same person (or two identical humans) analyz-
ing the same app, with and without the help of the tool, is generally
impossible, we believe the practitioners we recruited have similar
expertise and thus their analysis times are comparable in this case.

The results of our experiment indicate that a path provided by
ViaLin could indeed help cut the manual analysis time by around
40% in this case: it took the experts 15 and 9 hours, respectively, to
identify and describe the malicious key-stealing behavior in this
app. In a qualitative analysis, expert #2 believed that the provided
path was helpful to understand “which functions are part of the
malicious flow, to narrow down the amount of code that I analyze”.

They also noted that the reported path could be extended by
providing the calling context of methods, e.g., when a tainted vari-
able is written in a callback A but is accessed in a callback B. Such
context is needed to “better understand how and why a certain part
of the code is called”. Even though providing such information goes
beyond standard data-flow-based taint paths (even if extended with
implicit flows), we believe this is an interesting observation which
could be addressed in future work, e.g., by augmenting statements
in the reported taint paths with their corresponding stack trace
dumps or backward slices from the reported statements.

Finally, after expert #1 completed their analysis and reported
on the identified flow, we showed them the taint path detected by
ViaLin. The expert confirmed that the path appears to accurately
represent the flow of information they observed in the app and
could have been helpful to speed up their manual analysis.
Answer to RQ3: Path-level information provided by ViaLin can
help analysts identify security vulnerabilities and malicious behav-
iors in large real-world software.

7 LIMITATIONS AND THREATS TO VALIDITY

For external validity, our results may be affected by the subject
apps’ selection and may not necessarily generalize beyond our sub-
jects. We attempted to mitigate this threat by using a set of apps

ViaLin: Path-Aware Dynamic Taint Analysis for Android ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

available from related work without introducing investigator bias
into the selection process. As we used both known benchmarks and
Google Play apps of considerable size and complexity, we believe
our results are reliable. For internal validity, we had to analyze
the produced paths manually, to ensure their correctness. To miti-
gate possible bias related to this manual effort, two authors of this
paper performed the analysis independently and cross-checked
each other’s results. We make our implementation and evaluation
setup publicly available to encourage validation and replication
of our results. The main limitations of our approach, shared
with other taint analysis approaches, are the coarse-grained model-
ing of arrays, files, parcels, and native calls. ViaLin does not support
file copying using shell commands or native code, does not sup-
port implicit flows (as they commonly lead to severe over-tainting,
making the analysis impractical [18, 25]), and requires flashing the
device to run. We plan to investigate ways to address some of these
limitations, e.g., by borrowing approaches implemented in other
tools [20, 25, 49, 50], as part of future work. Moreover, as ViaLin
currently stores the file tainting artifacts in the user space, a mali-
cious app equipped with knowledge of how the tool works could
inspect and tamper with these files [12]. Developing anti-malware
analysis techniques, e.g., to raise an alert when an app accesses a
".taint" file, could be another subject of possible future work.

8 DISCUSSION AND RELATEDWORK

Wenowdiscuss closely-related information flow analysis techniques.
Dynamic Taint Analysis for Android. TaintDroid [18, 19] is
probably the first and the most complete dynamic taint analysis tool
for Android, which we extensively discussed in this paper. Several
subsequent approaches focused on improving the efficiency of taint
tracking, at the expense of tracking a smaller number of taints [45].
Others proposed approaches to tracking up to 232 sources by sacri-
ficing the performance of the tool [48].

Additional work focused on tracking taints within native code [41,
49, 50], tracking implicit flows along control dependencies [22, 26,
52], and using static analysis to optimize instrumentation to im-
prove the efficiency of dynamic analysis at runtime [13, 54]. Our
work is orthogonal to all these approaches as none of them focuses
on reporting statement-level taint path information.
Dynamic Taint Analysis for non-Android Software. A few
dynamic taint analysis approaches outside of the Android/mobile
domain focus on reporting information beyond taint sources and
sinks. For example, Panorama [51] is a Windows malware detec-
tion and analysis tool that reports how taint propagates through
operating system processes and resources, e.g., threads and files.
FAROS [38] collects provenance information about the network,
processes/memory, and the file-system. That is, similar to Panorama,
FAROS reports high-level data propagationwithin the system among
network calls, processes, and file systems. Similarly, RAIN [27] and
RTAG [28] produce a provenance graph which includes informa-
tion about processes, files, and network endpoints. While these
tools generate certain taint provenance information, none of them
reports statement-level taint paths, as ViaLin does.
Other Dynamic Information Flow Analyses. Closely related to
dynamic taint analysis are other types of information flow analysis
techniques, such as techniques based on dynamic forward slic-
ing [31] – an approach for computing statements that are affected

by certain program inputs via control and data dependencies. When
focusing on unsafe information flows, “classical” slices can include
many irrelevant control dependencies, causing over-tainting. To
address this issue, several approaches also devise algorithms for
computing only a subset of “necessary” control dependencies.

For example, DynFlow [33–36] is a hybrid approach that per-
forms a dynamic forward slicing for Java with an option to pre-
compute certain implicit flows statically. As DynFlow iteratively
computes and stores a forward slice for each program variable, it
duplicates path information for related variables, inducing high
time and memory overhead. The authors note that their approach
does not scale for large interactive programs with long traces [35].
Instead, ViaLin takes a more memory-efficient approach.

The proposal of Shroff et al. [44] introduces a dynamic informa-
tion flow system which also tracks direct and indirect information
flows. The formalism borrows ideas from dynamic taint analysis
by tracking a taint mark per variable, which indicates whether the
variable is part of the tracked flow. It then proposes to keep a set of
def-use edges, adding an edge each time a tainted variable is used in
an assignment. While this approach avoids duplicating information,
using one taint mark only does not allow it to distinguish between
information flows originating from different variables. Moreover,
the approach is only conceptual and was never implemented.

Overall, existing approaches suffer from several limitations, mak-
ing ViaLin the first practical approach for path-aware dynamic taint
tracking that (a) implements memory-efficient, non-repetitive, and
garbage-collectable structures, (b) supports multiple taint sources,
(c) supports statement-instance-level (rather than statement-level)
analysis, and (d) deals with Android-related constructs.

There are several existing dynamic backward slicing approaches,
in particular for Android [7, 11]. These approaches first collect an
execution trace and then construct slices backwards by analyzing
the trace. To accurately perform post-execution backward analysis,
forward execution needs to collect high volumes of (potentially
irrelevant) information, making the approach impractical for large
programs and long execution traces [31, 36].

9 CONCLUSION

This paper presents a dynamic taint analysis approach for Android
software, implemented in a tool named ViaLin, which identifies
and reports accurate statement-level taint propagation information,
i.e., how the information flows from a sensitive source to a sensitive
sink. To the best of our knowledge, ViaLin is the first to provide
such a statement-level flow tracking. We evaluated ViaLin on a
number of practical use cases and demonstrated that it can help
detect vulnerable and malicious behaviors in large real software.

10 DATA AVAILABILITY

The implementation of ViaLin and our evaluation package are
available online [8].

ACKNOWLEDGMENTS

This work is partially supported by Meta/WhatsApp Security team.
We thank them for the support. We also thank the security experts
whose analysis contributed to the results in Section 6.4 and the
anonymous reviewers whose comments helped improve this paper.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Khaled Ahmed, Yingying Wang, Mieszko Lis, Julia Rubin

REFERENCES

[1] [n. d.]. Avoid Hard-coded JWT Secret Keys. https://www.appmarq.com/public/
tqi,1025030,Avoid-hard-coded-JWT-secret-keys.

[2] [n. d.]. DroidBench 3.0. https://github.com/secure-software-engineering/
DroidBench/tree/develop.

[3] [n. d.]. ICC-Bench. https://github.com/fgwei/ICC-Bench.
[4] [n. d.]. JWT Hardcoded Secret Key. https://docs.boostsecurity.io/rules/code-jwt-

hardcoded-secret-key.html.
[5] [n. d.]. Malicious WhatsApp Mod Distributed Through Legitimate Apps.

https://securelist.com/malicious-whatsapp-mod-distributed-through-
legitimate-apps/107690/.

[6] [n. d.]. TaintBench. https://taintbench.github.io/taintbenchSuite/.
[7] Khaled Ahmed, Mieszko Lis, and Julia Rubin. 2021. Mandoline: Dynamic Slicing

of Android Applications with Trace-Based Alias Analysis. In 2021 14th IEEE
Conference on Software Testing, Verification and Validation (ICST). 105–115.

[8] Khaled Ahmed, Yingying Wang, Mieszko Lis, and Julia Rubin. 2023. Supplemen-
tary Materials. https:// resess.github.io/artifacts/ViaLin/ .

[9] Steven Arzt. 2017. Static Data Flow Analysis for Android Applications. Ph. D.
Dissertation. Darmstadt University of Technology, Germany.

[10] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-
Droid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps. In Proc. of Conference on Programming Language
Design and Implementation (PLDI). 259–269.

[11] Tanzirul Azim, Arash Alavi, Iulian Neamtiu, and Rajiv Gupta. 2019. Dynamic
Slicing for Android. In Proc. of International Conference on Software Engineering
(ICSE). 1154–1164.

[12] Golam Sarwar Babil, Olivier Mehani, Roksana Boreli, and Mohamed-Ali Kaafar.
2013. On the Effectiveness of Dynamic Taint Analysis for Protecting Against
Private Information Leaks on Android-based Devices. In Proc. of International
Conference on Security and Cryptography (SECRYPT). 1–8.

[13] Michael Backes, Sven Bugiel, Oliver Schranz, Philipp Von Styp-Rekowsky, and
Sebastian Weisgerber. 2017. ARTist: The Android Runtime Instrumentation
and Security Toolkit. In Proc. of European Symposium on Security and Privacy
(EuroS&P). 481–495.

[14] David Brumley, Juan Caballero, Zhenkai Liang, and James Newsome. 2007. To-
wards Automatic Discovery of Deviations in Binary Implementations with Ap-
plications to Error Detection and Fingerprint Generation. In Proc. of USENIX
Security Symposium.

[15] Michael Cao, Khaled Ahmed, and Julia Rubin. 2022. Rotten Apples Spoil the
Bunch: An Anatomy of Google Play Malware. In Proc. of International Conference
on Software Engineering (ICSE). 1919–1931.

[16] João Cartucho. [n. d.]. Record and Replay Touchscreen Events on Android.
https://github.com/Cartucho/android-touch-record-replay.

[17] Dorothy E. Denning and Peter J. Denning. 1977. Certification of Programs for
Secure Information Flow. Commun. ACM 20, 7 (1977), 504–513.

[18] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. 2010. TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on Smartphones. In Proc. of the
9th USENIX Symposium on Operating Systems Design and Implementation (OSDI).

[19] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth.
2014. TaintDroid: An Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones. Transactions on Computer Systems (TOCS) 32, 2
(2014), 1–29.

[20] Xiaoqin Fu and Haipeng Cai. 2021. FlowDist: Multi-Staged Refinement-Based
Dynamic Information Flow Analysis for Distributed Software Systems. In Proc.
of USENIX Security Symposium. 2093–2110.

[21] Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen Nguyen,
and Martin C Rinard. 2015. Information Flow Analysis of Android Applications
in DroidSafe. In Proc. of Network and Distributed System Security Symposium
(NDSS).

[22] Mariem Graa, Nora Cuppens-Boulahia, Frédéric Cuppens, and Ana Cavalli. 2015.
Detection of Illegal Control Flow in Android System: Protecting Private Data
Used by Smartphone Apps. In Proc. of International Symposium on Foundations
and Practice of Security (FPS). 337–346.

[23] William G. J. Halfond, Alessandro Orso, and Panagiotis Manolios. 2006. Using
Positive Tainting and Syntax-aware Evaluation to Counter SQL Injection Attacks.
In Proc. of International Symposium on Foundations of Software Engineering (FSE).
175–185.

[24] Behnaz Hassanshah and Roland H.C. Yap. 2017. Android Database Attacks
Revisited. In Proc. of Asia Conference on Computer and Communications Security
(ASIA CSS). 625–639.

[25] Katherine Hough and Jonathan Bell. 2022. A Practical Approach for Dynamic
Taint Tracking with Control-flow Relationships. Transactions on Software Engi-
neering and Methodology (TOSEM) 31, 2 (2022), 26:1–26:43.

[26] Hiroki Inayoshi, Shohei Kakei, Eiji Takimoto, Koichi Mouri, and Shoichi Saito.
2019. Prevention of Data Leakage due to Implicit Information Flows in Android

Applications. In Proc. of Asia Joint Conference on Information Security (AsiaJCIS).
103–110.

[27] Yang Ji, Sangho Lee, Evan Downing, Weiren Wang, Mattia Fazzini, Taesoo Kim,
Alessandro Orso, and Wenke Lee. 2017. RAIN: Refinable Attack Investigation
with On-Demand Inter-Process Information Flow Tracking. In Proc. of Conference
on Computer and Communications Security (CCS). 377–390.

[28] Yang Ji, Sangho Lee, Mattia Fazzini, Joey Allen, Evan Downing, Taesoo Kim,
Alessandro Orso, and Wenke Lee. 2018. Enabling Refinable Cross-Host Attack
Investigation with Efficient Data Flow Tagging and Tracking. In Proc. of USENIX
Security Symposium. 1705–1722.

[29] Ulf Kargén and Nahid Shahmehri. 2012. InputTracer: A Data-Flow Analysis Tool
for Manual Program Comprehension of x86 Binaries. In Proc. of International
Working Conference on Source Code Analysis and Manipulation (SCAM). 138–143.

[30] Jingfei Kong, Cliff Changchun Zou, and Huiyang Zhou. 2006. Improving Software
Security Via Runtime Instruction-level Taint Checking. In Proc. of ASPLOS Work-
shop on Architectural and System Support for Improving Software Dependability
(ASID). 18–24.

[31] Bogdan Korel and Satish Yalamanchili. 1994. Forward Computation of Dynamic
Program Slices. In Proc. of International Symposium on Software Testing and
Analysis (ISSTA). 66–79.

[32] Timothy Robert Leek, Graham Z Baker, Ruben Edward Brown, Michael A Zhivich,
and RP Lippmann. 2007. Coverage Maximization Using Dynamic Taint Tracing.
Technical Report Technical Report TR-1112. MIT Lincoln Laboratory.

[33] Wes Masri, Nagi Nahas, and Andy Podgurski. 2006. Memoized Forward Computa-
tion of Dynamic Slices. In Porc. of International Symposium on Software Reliability
Engineering (ISSRE). 23–32.

[34] Wes Masri and Andy Podgurski. 2008. Application-based Anomaly Intrusion
Detection with Dynamic Information Flow Analysis. Computers & Security 27, 5
(2008), 176–187.

[35] Wes Masri and Andy Podgurski. 2009. Algorithms and Tool Support for Dynamic
Information Flow Analysis. Information and Software Technology 51, 2 (2009),
385–404.

[36] Wes Masri, Andy Podgurski, and David Leon. 2004. Detecting and Debugging
Insecure Information Flows. In Porc. of International Symposium on Software
Reliability Engineering (ISSRE). 198–209.

[37] Wei Meng, Ren Ding, Simon P. Chung, Steven Han, and Wenke Lee. 2016. The
Price of Free: Privacy Leakage in Personalized Mobile In-Apps Ads. In Proc. of
Network and Distributed System Security Symposium (NDSS).

[38] Meisam Navaki Arefi, Geoffrey Alexander, Hooman Rokham, Aokun Chen,
Michalis Faloutsos, XuetaoWei, Daniela Seabra Oliveira, and Jedidiah R. Crandall.
2018. FAROS: Illuminating In-memory Injection Attacks via Provenance-Based
Whole-System Dynamic Information Flow Tracking. In Proc. of International
Conference on Dependable Systems and Networks (DSN). 231–242.

[39] Felix Pauck, Eric Bodden, and Heike Wehrheim. 2018. Do Android Taint Ana-
lysis Tools Keep Their Promises?. In Proc. of International Symposium on the
Foundations of Software Engineering (FSE). 331–341.

[40] Lina Qiu, Yingying Wang, and Julia Rubin. 2018. Analyzing the Analyzers:
FlowDroid/IccTA, AmanDroid, and DroidSafe. In Proc. of International Symposium
on Software Testing and Analysis (ISSTA). 176–186.

[41] Ali Razeen, Alvin R. Lebeck, David H. Liu, Alexander Meijer, Valentin Pistol,
and Landon P. Cox. 2018. SandTrap: Tracking Information Flows On Demand
with Parallel Permissions. In Proc. of Annual International Conference on Mobile
Systems, Applications, and Services (MobiSys). 230–242.

[42] ThomasW. Reps, Susan Horwitz, and Shmuel Sagiv. 1995. Precise Interprocedural
Dataflow Analysis via Graph Reachability. In Proc. of Symposium on Principles of
Programming Languages (POPL). 49–61.

[43] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All You
Ever Wanted to Know about Dynamic Taint Analysis and Forward Symbolic
Execution (but Might Have Been Afraid to Ask). In Proc. of Symposium on Security
and Privacy (SP). 317–331.

[44] Paritosh Shroff, Scott Smith, and Mark Thober. 2007. Dynamic Dependency
Monitoring to Secure Information Flow. In Proc. of Computer Security Foundations
Symposium (CSF). 203–217.

[45] Sun, Mingshen and Wei, Tao and Lui, John C.S. 2016. TaintART: A Practical
Multi-Level Information-Flow Tracking System for Android RunTime. In Proc. of
Conference on Computer and Communications Security (CCS). 331–342.

[46] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weisman.
2009. TAJ: Effective Taint Analysis of Web Applications. In Proc. of the Conference
on Programming Language Design and Implementation (PLDI). 87–97.

[47] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. 2014. Amandroid: A
Precise and General Inter-component Data FlowAnalysis Framework for Security
Vetting of Android Apps. In Proc. of Conference on Computer and Communications
Security (CCS). 1329–1341.

[48] Zhen Xu, Chen Shi, Chris Chao-Chun Cheng, Neil Zhengqiang Gong, and Yong
Guan. 2018. A Dynamic Taint Analysis Tool for Android App Forensics. In Proc.
of Security and Privacy Workshops (SPW). 160–169.

[49] Lei Xue, Chenxiong Qian, Hao Zhou, Xiapu Luo, Yajin Zhou, Yuru Shao, and
Alvin T.S. Chan. 2019. NDroid: Toward Tracking Information Flows Across

https://www.appmarq.com/public/tqi,1025030,Avoid-hard-coded-JWT-secret-keys
https://www.appmarq.com/public/tqi,1025030,Avoid-hard-coded-JWT-secret-keys
https://github.com/secure-software-engineering/DroidBench/tree/develop
https://github.com/secure-software-engineering/DroidBench/tree/develop
https://github.com/fgwei/ICC-Bench
https://docs.boostsecurity.io/rules/code-jwt-hardcoded-secret-key.html
https://docs.boostsecurity.io/rules/code-jwt-hardcoded-secret-key.html
https://securelist.com/malicious-whatsapp-mod-distributed-through-legitimate-apps/107690/
https://securelist.com/malicious-whatsapp-mod-distributed-through-legitimate-apps/107690/
https://taintbench.github.io/taintbenchSuite/
https://resess.github.io/artifacts/ViaLin/
https://github.com/Cartucho/android-touch-record-replay

ViaLin: Path-Aware Dynamic Taint Analysis for Android ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Multiple Android Contexts. Transactions on Information Forensics and Security
(TIFS) 14, 3 (2019), 814–828.

[50] Lei Xue, Yajin Zhou, Ting Chen, Xiapu Luo, and Guofei Gu. 2017. Malton: Towards
On-Device Non-Invasive Mobile Malware Analysis for ART. In Proc. of USENIX
Security Symposium. 289–306.

[51] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda. 2007.
Panorama: Capturing System-Wide Information Flow for Malware Detection and
Analysis. In Proc. of Conference on Computer and Communications Security (CCS).
116–127.

[52] Wei You, Bin Liang, Wenchang Shi, Peng Wang, and Xiangyu Zhang. 2020. Taint-
Man: An ART-Compatible Dynamic Taint Analysis Framework on Unmodified

and Non-Rooted Android Devices. Transactions on Dependable and Secure Com-
puting (TDSC) 17, 1 (2020), 209–222.

[53] Junbin Zhang, Yingying Wang, Lina Qiu, and Julia Rubin. 2021. Analyzing An-
droid Taint Analysis Tools: FlowDroid, Amandroid, and DroidSafe. Transactions
on Software Engineering (TSE) (2021).

[54] Mu Zhang andHeng Yin. 2014. Efficient, Context-Aware Privacy Leakage Confine-
ment for Android Applications without FirmwareModding. In Proc. of Symposium
on Information, Computer and Communications Security (ASIA CCS). 259–270.

Received 2023-02-02; accepted 2023-07-27

	Abstract
	1 Introduction
	2 ViaLin by Example
	3 Background
	4 Approach
	4.1 Taint Tags
	4.2 Taint Injection and Propagation
	4.3 Taint Checking
	4.4 Memory Management

	5 Evaluation Methodology
	5.1 Subject Applications
	5.2 Evaluation Methodology and Baseline Tools

	6 Results
	6.1 RQ1.1 (Detection Accuracy)
	6.2 RQ1.2 (Path Construction Accuracy)
	6.3 RQ2 (Performance)
	6.4 RQ3 (Utility)

	7 Limitations and Threats to Validity
	8 Discussion and Related Work
	9 Conclusion
	10 Data Availability
	References

