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Abstract
In this paper, we identify a previously untapped source of

compressibility in cache working sets: clusters of cachelines

that are similar, but not identical, to one another. To com-

press the cache, we can then store the “clusteroid” of each

cluster together with the (much smaller) “diffs” needed to

reconstruct the rest of the cluster.

To exploit this opportunity, we propose a hardware-level

on-line cacheline clustering mechanism based on locality-

sensitive hashing. Our method dynamically forms clusters

as they appear in the data access stream and retires them as

they disappear from the cache. Our evaluations show that

we achieve 2.25× compression on average (and up to 9.9×)

on SPEC CPU 2017 suite and is significantly higher than

prior proposals scaled to an iso-silicon budget.
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1 Introduction
Over the past decade, on-chip last-level cache (LLC) capacity

has grown substantially, from 24MB to 64MB for SRAM [29,

48] and 30MB to 120MB for eDRAM [52, 54]. Due to the

slowdown of Moore’s Law, however, further growth of LLCs

is becoming increasingly costly.

As an alternative, researchers have explored programmer-

transparent data compression techniques for the LLC. These

techniques generally fall into two classes: (a) intra-cacheline

compression, which places multiple memory blocks within
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each cacheline [36, 38, 45], and (b) inter-cacheline dedupli-

cation [55], which helps capture data redundancy across

cacheline boundaries by detecting identical cachelines and

storing only a single copy.

In this paper, we show that compression can be signifi-

cantly improved — to 2.25× geomean — by clustering mem-

ory blocks that have nearly identical, rather than exact, data

values. We propose a dynamic inter-cacheline compression

technique which uses dynamic clustering to efficiently detect

and compress groups of similar memory blocks.

Limitations of prior approaches. LLC-based compres-

sion can work with two workload properties: (a) limited

entropy in the cached values and (b) regularity in the struc-

ture in the organization of these data. For instance, intra-

cacheline compression schemes exploit the first property:

they take advantage of low entropy of data within a small

memory block (e.g., a cacheline) by compressing each block

independently [2–5, 10, 14, 34, 36, 38, 43, 45, 46]. These can

work well when the working set consists of arrays of primi-

tive data types with a relatively low range of values. However,

they do not capture the structural properties of more sub-

stantial, heterogeneous data structures, whose redundancy

surfaces only when considering multiple cachelines.

Inter-cacheline compression, on the other hand, can ex-

ploit such scenarios by detecting and exploiting structure reg-

ularity across cacheline boundaries [55, 56]. Unfortunately,

state-of-the-art inter-cacheline compression methods have

significant drawbacks. Proposals like exact deduplication

can only exploit data regularity if multiple LLC lines have ex-
act data values [55], while techniques that directly leverage

program-level data structure information require pervasive

program changes and ISA extensions [56]. Cache compres-

sion methods that return approximate values [40, 41] work

well for noise-resilient data (e.g., images), but are unsuitable

for general-purpose workloads. The compression scheme we

propose in this paper overcomes these limitations.

Untapped potential. For architectures like CPUs, pro-

grammability and ease of use are important considerations.

Thus, LLC compression techniques that are both programmer-

transparent and general-purpose are preferable. Dedup [55]

is the only inter-cacheline proposal that meets both criteria.

Unfortunately, Dedup misses out on many compression op-

portunities because it requires multiple memory blocks to

have exact data values.
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To see how much opportunity is lost, consider an ideal

inter-cacheline compression scheme that inserts data by

searching the entire LLC for similar cachelines and stores

only the bytes that differ from the most similar existing

cacheline whenever this representation is smaller than an

uncompressed cacheline; we refer to this setup as Ideal-Diff.

Figure 1 shows the effective LLC capacity for (a) a system

without compression, (b) an idealized deduplication scheme

that also instantly searches the LLC for exact matches (Ideal-
Dedup), and (c) Ideal-Diff, on SPEC CPU 2017 suite [7]. The

potential of detecting and compressing similar lines is signif-

icant: Ideal-Diff increases the LLC capacity by 2.5× over the

baseline (geomean), compared to only 1.3× for Ideal-Dedup.
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Figure 1. Effective LLC capacity from data compression by

executing the SPEC-2017 suite [7]. On average, Ideal Dedu-

plication (Ideal-Dedup) improves the effective LLC capacity

by 1.3×. However, Ideal-Diff, that groups nearly identical

memory blocks, can increase effective LLC capacity by 2.5×.

To achieve good compression with Ideal-Diff, the over-

heads of storing diffs must be low (i.e. the diffs must be

relatively small). We observed that this tends to be true for

a wide range of workloads. For example, Figure 2(top) il-

lustrates this using an LLC snapshot of the mcf workload

from SPEC CPU 2017 [7]. The working set contains very

few duplicate memory blocks, making exact deduplication

ineffective. Intra-cacheline techniques also have limited ef-

fectiveness, as the primary datatype contains a variety of

fields with different types and ranges (see Listing 1).
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𝑙1 : 00002AAAC02419D8 00002AAAC0237610 0000000000000000 FFFFFFFFFECEF790 00006A04FFFFFE67 · · ·
𝑙2 : 00002AAAC024B8B0 00002AAAC023EE60 0000000000000000 FFFFFFFFFECEF73C 00006A2CFFFFEEE7 · · ·
𝑙3 : FFFFFFFFFFFFFFC4 00002AAAC11FE988 0000000000000000 0000000001312724 FFFFFFFFFECED8DC · · ·
𝑙4 : FFFFFFFFFFFFFFC4 00002AAAC11FA920 0000000000000000 00000000013123A0 FFFFFFFFFECEDC60 · · ·

Figure 2. Top: Fraction of 64-byte cachelines in an LLC

snapshot of mcf that can be deduplicated with at least one

other cacheline if differences up to 𝑛 bytes are permitted for

0 ≤ 𝑛 ≤ 64. Bottom: Two clusters of near-duplicate cache-

lines from mcf.
On the other hand, exploiting similarity across cacheline

boundaries and relaxing the exact-duplicate requirement is

struct node –
val (8 Bytes) potential;
val (4 Bytes) orientation;
ptr (8 Bytes) child, pred
ptr (8 Bytes) sibling, sibling˙prev;
ptr (8 Bytes) basic˙arc,firstout;
ptr (8 Bytes) firstin, arc˙tmp;
val (8 Bytes) flow;
val (8 Bytes) depth;
val (4 Bytes) number;
val (4 Bytes) time;

˝;

Listing 1. The node data structure in mcf

very effective: almost half of the cached memory blocks dif-

fer from another block by a maximum of 8 bytes, and nearly

all memory blocks differ only by a maximum of 16 bytes.

Therefore, we can obtain significant LLC storage capacity by

storing 16-byte diffs instead of full 64-byte blocks.

Challenges. Unfortunately, working sets usually do not

contain a single reference memory block around which all

other memory blocks could cluster; on the contrary, we may

require several reference memory blocks with vastly differ-

ent data values. This is the case in mcf : in Figure 2(bottom),

lines 𝑙1 . . . 𝑙4 all come from the same node data structure

in mcf, but only {𝑙1, 𝑙2} and {𝑙3, 𝑙4} are near-duplicate pairs.

This is because node takes up 68 bytes (see Listing 1) and

is not aligned to the 64-byte cacheline size. The misalign-

ment naturally creates several “clusters,” each with its own

reference memory block referred to as the “clusteroid.” To

achieve effective compression, therefore, multiple clusters

must be identified; in addition, because the contents are

input-dependent, this must happen dynamically at runtime.

Our proposal. This paper proposes Thesaurus, a cache

compression method that relies on efficient dynamic “clus-

tering” of memory blocks in the LLC. To form clusters dy-

namically, Thesaurus uses locality-sensitive hashing (LSH),

which produces the same hash for similar blocks and differ-

ent hashes for dissimilar blocks [25]. The LSH fingerprint

of an incoming memory block becomes its “cluster ID”: if

other memory blocks with the same cluster ID are already

cached, only the difference between the new memory block

and an existing reference memory block for that cluster (the

“clusteroid”) is stored. Over time, as cluster members are

evicted from the LLC, clusters that are not useful are natu-

rally disbanded; this enables Thesaurus to adapt to changing

workload phases by forming new clusters over time.

Broadly, this paper makes the following contributions:

1. We demonstrate significant similarity in the data val-

ues of memory blocks across different cachelines for a

broad range of workloads.

2. We propose Thesaurus, an efficient LLC compression

scheme based on clustering similar memory blocks

using locality-sensitive hashing.
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3. We develop practical dynamic cluster-detection hard-

ware suitable for inclusion near the LLC, including

a novel, hardware-friendly locality-sensitive hashing

design.

4. We develop a replacement policy for the data array in

the LLC that balances the development of new clusters

with conserving existing clusters.

To the best of our knowledge, Thesaurus is the first LLC

compression scheme based on dynamic clustering, and the

first to leverage locality-sensitive hashing.

We evaluate Thesaurus on the SPEC CPU 2017 [7] suite.

The cache footprints for these benchmarks are dominated by

a range of different data structures. We show that Thesaurus

compresses the cache footprint up to 9.9× (2.25× geomean)

when compared to an LLC that does not employ compres-

sion — a substantial improvement over the 1.28× (geomean)

achieved by the state-of-the-art inter-cacheline compression

scheme Dedup [55] and the 1.48× (geomean) achieved with

the state-of-the-art inter-cacheline scheme BΔI [38] given

the same silicon area. The effective compression frees up

space to cache additional data, allowing Thesaurus to achieve

speedups up to 27% (7.9% on average) over an uncompressed

baseline on the cache-sensitive benchmarks.

2 Background
In this section, we provide a brief background on last-level

cache organization, and describe the key insights behind key

prior LLC compression schemes.

2.1 Last-Level Cache (LLC) Organization
The Last-Level Cache (LLC) logically consists of several sets

and each set contains multiple ways; modern LLCs have 4–8

ways per set. Physically, the LLC consists of tag and data

arrays, usually with a dedicated tag and data array for each

way in a set: e.g., an 8-way LLC has eight tag and eight data

arrays. All ways in the set — and therefore all arrays — can be

simultaneously queried during a cache access. Each cacheline

in the data array is allocated one tag in its respective tag

array: when an incoming memory block is placed in the LLC,

it is assigned to the set that corresponds to its address, and

replaces the tag and data entries for one of the ways. If this

way previously contained valid data, this data is first evicted.

2.2 Intra-Cacheline Compression in LLC: B𝚫I
A simple technique to increase the capacity of the LLC is to

employ intra-cacheline compression. In this scheme, each

incoming memory block is examined in isolation, and, if

possible, compressed independently of other blocks. For ex-

ample, Base-Delta-Immediate (BΔI), a state-of-the-art intra-

cacheline LLC compression technique [38], exploits the in-

sight that, in many workloads, data values within a memory

block are similar, and therefore can be compressed as a “base”
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Figure 3. Last-Level Cache (LLC) implementing BΔI Com-

pression. The LLC has multiple tags per cacheline to store

additional tags for each of the compressed memory block

within the physical cacheline.

value combined with small offsets. To store up to two mem-

ory blocks per cacheline, BΔI doubles the number of tag

arrays for each way in the LLC, as shown in Figure 3.

2.3 Inter-Cacheline Compression in LLC:
Deduplication

In contrast, the state-of-the-art inter-cacheline cache com-

pression scheme Dedup exploits the existence of exactly iden-

tical memory blocks across the LLC in some workloads [55].

As shown in Figure 4, Dedup tries to store only a single copy

of a block that would be represented by several copies in an

uncompressed LLC. The key challenge here is that probing

the entire cache to search for duplicates is impractical (unlike

compressing a single cacheline, as BΔI does).

To overcome this limitation, Dedup uses a “hash table” that

stores (say) 16-bit fingerprints of 64-byte memory blocks and

their locations in the data array. While a “hit” must be veri-

fied against the actual 64-byte block to avoid false matches,

in practice collisions are rare. Because cached values have

some temporal locality, using a limited-size hash table with
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Figure 4. Last-Level Cache (LLC) implementing Deduplica-

tion (Dedup). Dedup enables multiple tags to point to the

same cacheline containing a common memory block. Dur-

ing the LLC insertion of the memory block, Dedup uses a

hash-table of the most recently used data values to identify

exactly identical cachelines.
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the most recently used fingerprints (say up to 1024 hashes)

covers most of the duplication in typical working sets [55].

In addition to the limitations due to the exact-match re-

quirement, Dedup has two performance challenges. One is

that, as shown in Figure 4, data insertion involves a reference

to the hash-table (action 1 ) followed by a reference into the

LLC data array (action 2 ) to verify the exact contents of the

memory block. Another limitation is that evicting a dedupli-

cated memory block from the data array requires evicting

all tags that point to it; in turn, this means that the tag array

entries must contain two pointers to form a doubly-linked

list for each deduplicated memory block value.

3 Motivation for In-Cache Clustering
To determine whether in-cache clustering is practical, and

whether it should be dynamic, we asked three questions:

1. Do caches contain clusters with enough elements to

provide substantial opportunities for compression?

2. Are there few clusters with clusteroids that could be

hardcoded, or must clusteroids be computed at run-

time?

3. Do cluster count and size vary among workloads enough

to need a runtime-adaptive solution?

To answer these questions, we performed dbscan cluster-

ing [17] on LLC snapshots from the SPEC CPU 2017 suite,

configuring similarity criteria for each workload to target

40% space savings. The experimental setup here is idealized

in two ways: (a) the algorithm sees the entire LLC at once

rather than each memory block separately at insertion time,

and (b) dbscan uses far more computation and storage than

is practical to implement within a cache controller.

Figure 5 shows that the LLC in most workloads has sig-

nificant clusters of 10 or more members, with many exhibit-

ing larger clusters of even 1,200 memory blocks (povray,

roms). Because some workloads need many separate clus-

ters to achieve substantial compression (e.g., bwaves and
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Figure 5. Cluster parameters after applying dbscan to LLC

snaphots from different SPEC workloads. Workloads were

run for 40B instructions after skipping the 100B instructions.

Cluster distance was set to achieve an average 40% space

savings in each snapshot.

cactuBSSN ), hard-coding cluster parameters in hardware is

impractical. Finally, because cluster counts and sizes vary

widely across the benchmark suite, clustering must be done

dynamically at runtime, with performance considerations

dictating a hardware-based or hardware-accelerated solu-

tion.

4 Dynamic Clustering
Directly applying clustering techniques to cache compres-

sion is complicated by two challenges. Firstly, cache contents

can change as often as every few cycles as lines are inserted

and evicted, so there is never a stable image “snapshot” to

be analyzed. Secondly, the need to incorporate clustering in

a cache controller requires that is both relatively quick (on

the order of a few cycles) and inexpensive to implement in

hardware. These requirements exclude common clustering

algorithms like k-means [32] or dbscan [17].

To overcome these challenges, we observe that an approx-
imate clustering technique — one where a point is placed

in the “correct” cluster with high probability, but can also

end up in an entirely “wrong” cluster with low probability —

is sufficient for cache compression. This is because the few

lines that end up in the wrong cluster can simply be stored

uncompressed; provided this happens rarely, compression

ratio will not be significantly affected.

Thesaurus therefore uses a dynamic approximate clus-

tering mechanism based on locality-sensitive hashing [25].

In this section, we will briefly discuss two key underlying

concepts: (a) how locality-sensitive hashing can be used for

approximate clustering, and (b) how locality-sensitive hash-

ing can be efficiently implemented in hardware.

4.1 Locality-Sensitive Hashing (LSH)
LSH was initially developed as a data structure for the ap-

proximate-nearest-neighbour problem [25]. It has been es-

pecially popular in big-data environments, and used for

streaming nearest-neighbour queries [31, 35], encrypted data

search in cloud storage [58], detecting near-duplicate web

pages [49], finding DNA patterns [8], unsupervised learn-

ing [22], computer vision [12], deep learning [16, 51], etc.

The idea is to create a family of hash functions that map

points in some metric space to discrete buckets, so that the

probability of hash collision is high for nearby points but

low for points that are far away from each other. Specifically,

given two points 𝑥 and 𝑦 in an 𝑑-dimensional real space R𝑑

with a distance metric ∥𝑥,𝑦∥, a family of hash functions H
is called locality-sensitive if it satisfies two conditions:

1. if ∥𝑥,𝑦∥ ≤ 𝑟1, then Pr[ℎ(𝑥) = ℎ(𝑦)] ≥ 𝑝1, and

2. if ∥𝑥,𝑦∥ > 𝑟2, then Pr[ℎ(𝑥) = ℎ(𝑦)] ≤ 𝑝2,

when ℎ is chosen uniformly at random from H , 𝑟1 < 𝑟2

are distances, and 𝑝1 > 𝑝2 are probabilities [25]. In the con-

text of cache compression, we want a distance metric that

(a) correlates with the number of bytes needed to encode

4
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the difference between 𝑥 and 𝑦, and (b) is easy to evaluate,

the ℓ1 metric being a natural candidate. Typically, we want

𝑟2 = (1 + 𝜀)𝑟1 for some small 𝜀 > 0.

To see how such a hash family could be created, consider

the space {0, 1}𝑑 of𝑑-bit strings under the Hamming distance

metric, and, without loss of generality, choose two bit strings

𝑥 and 𝑦 in this space. Let H = {ℎ1, . . . , ℎ𝑑 }, where ℎ𝑖 simply

selects the 𝑖th bit of its input. Intuitively, if ∥𝑥,𝑦∥ is small

(i.e., few bits differ), the probability that ℎ𝑖 (𝑥) ≠ ℎ𝑖 (𝑦) (i.e.,

selecting a different bit) with a randomly selected ℎ𝑖 will be

small; in contrast, if ∥𝑥,𝑦∥ is large (i.e., many bits differ), the

probability that ℎ𝑖 (𝑥) ≠ ℎ𝑖 (𝑦) will be high. Observe that the

difference between the two probabilities will be amplified

if we again select an ℎ 𝑗 at random and require 𝑥 and 𝑦 to

match under both ℎ𝑖 and ℎ 𝑗 to conclude that ℎ(𝑥) = ℎ(𝑦).
The locality-sensitive hashing algorithm leverages this

insight by mapping each point to an LSH fingerprint by con-

catenating the outputs of 𝑘 randomly chosen functions in

family H . Typically, bit sampling is replaced with multipli-

cation by a matrix randomly sampled from a suitably con-

structed normal distribution, as illustrated in Figure 6(left);

such random projections preserve the distance between any

two points to within a small error [19, 27]. By carefully select-

ing the LSH matrix, an arbitrarily high probability of finding

a near neighbour within a chosen radius can be achieved

(see [23] for details and a formal analysis).

4.2 Using LSH for Clustering and Compression
The fingerprint obtained by applying the chosen subset of H
and concatenating the results naturally leads to a cluster-

ing scheme where all points with the same fingerprint are

assigned to the same cluster. Crucially for cache compres-

sion, computing this fingerprint requires no preprocessing

or queries of previously cached data.

At the same time, there are two challenges. One is that a

cacheline may rarely be assigned to the “wrong” cluster, and

be incompressible with respect to that cluster’s clusteroid.

Because this occurs very rarely, however, the effect on the

overall compression ratio is negligible.

The other challenge is that cluster diameters vary across

workloads (see Section 3), but combining LSH functions in

a single fingerprint requires fixing the near-distance radius

𝑟1 (see Section 4.1). Again, correctness is not compromised

because the “misclassified” lines can be stored uncompressed;

however, the near-distance radius must be carefully chosen

to keep those events rare and provide good compression.

To effect compression, we must also select a base (clus-

troid) for each cluster: the base will be stored uncompressed,

and lines in the same cluster will be encoded as differences

with respect to this base (see Section 5.1). Because a cluster-

ing scheme based on LSH treats all points in a cluster equally

and does not identify a true centroid, we simply choose the

first cacheline to be inserted with a given LSH as the cluster

base.

4.3 Hardware-Efficient LSH
A key disadvantage of the dimensionality reduction method

for computing LSH fingerprints (see Figure 6(left)) is that

applying the LSH matrix to the cacheline requires many

expensive multiplication operations (e.g., 64 if we treat the

cacheline as a byte vector); directly implementing this would

incur unacceptable overheads in silicon area, latency, or both.

The hardware-efficient LSH implementation in Thesaurus

combines two separate refinements of random projection.

The first is that multiplication can be avoided by replacing

the elements of the LSH matrix with +1, 0, or −1, chosen at

random with probabilities
1/6,

2/3, and
1/6 respectively, with

negligible effects on accuracy [1]. Indeed, the sparsity can be

further improved by reducing the probabilities of non-zero

values to
𝑑/log(𝑑) (where 𝑑 is the number of dimensions in

the original space), again at negligible accuracy loss [30];

this allows for very efficient hardware implementations [18].

(Refer to [1, 30] for a formal analysis of these optimizations.)

To reduce the resulting LSH fingerprints from many bytes

to a small number of bits, we combine this with another

refinement: the idea that each component of the LSH fin-

gerprint vector can be replaced with 1 if it is positive or 0

if it is negative while retaining the chosen LSH probability

bounds [9]. Besides resulting in small fingerprints, this al-

lows us to select the fingerprint size at bit granularity by

simply varying the number of hash functions used (i.e., num-

ber of LSH matrix rows).

Figure 6(centre) illustrates the LSH fingerprint compu-

tation in Thesaurus. The cacheline is first multiplied by a

sparse matrix with entries from {−1, 0, 1}; then, only the sign

of each scalar is retained, resulting in a fingerprint bit vec-

tor. Figure 6(right) illustrates the hardware implementation

using only adders and comparators.

5 TheThesaurus Architecture
Briefly, Thesaurus operates by applying the LSH hash as each

memory block is inserted. When another “base” memory

block with the same LSH exists, the incoming memory block

is stored as a byte-level difference with respect to the base (if

the difference is small enough to result in compression); if no

other memory blocks share the LSH, the incoming memory

block becomes the new “base” for the cluster.

Below, we first outline the Thesaurus compression format

and storage structures, then walk through an example, and

finally detail how Thesaurus operates.

5.1 Compression Format
Thesaurus uses two primary data encodings: a compressed

base+diff format, and an uncompressed raw format used

when compression is ineffective. We also use secondary data

encodings to optimize for three common-case patterns: all-

zero lines, base-only for lines that do not need a diff, and

0+diff for lines that do not need a base.

5
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Figure 6. Left: computing the fingerprint of a cacheline using dimensionality reduction. Centre: a hardware-friendly variant

developed for Thesaurus. Right: Hardware implementation using an adder tree and a comparator.

In the base+diff encoding, illustrated in Figure 7, memory

blocks within a cluster are represented as a compacted byte

difference with respect to a base memory block common to

the entire cluster. The encoding consists of a 64-bit mask that

identifies which bytes differ from the base ➋, followed by a

sequence of the bytes that differ ➊. During decompression,

the “base” and the compressed “diff” encoding are combined

by replacing the relevant bytes ➌.

Lines encoded as all-zero are identified as such in the tag

entry (see Section 5.2.1), and require no additional storage.

Similarly, base-only lines are equal to the cluster base, and so

do not need a diff entry in the data array. Finally, 0+diff lines

are encoded as a byte-difference from an all-zero cacheline.

5.2 Storage Structures
Figure 8 shows the storage structures used to implement

Thesaurus and the connections among them. As is typical in

prior compressed cache proposals [39, 55, etc.], the tag array

and the data array are decoupled to enable the storage of a

larger number of tags as compared to data entries.

Thesaurus stores the clusteroids for each possible LSH

fingerprint in main memory, and caches the most recently

used clusteroids within a small LLC-side structure similar to

a TLB, which we refer to as the base cache.

5.2.1 Tag Array. The tag array is indexed by the physi-

cal address of the LLC request, and entries are formatted as

shown in Figure 9. The tag, coh, and rpl fields respectively

startmap

Base

Data

Data 0010...

0010...

Base

Data

Data

(B+D)

(B+D)

00000111100000111100000111100000 Mask

Mask

Mask

22

11

33

Figure 7. The base+diff compression encoding in The-

saurus. Left: compression; right: decompression.

Set 0

Set 1

Set 0

Set 1

Tag Array Data Array

1

Base Cache

0

Figure 8. A two-set, two-way Thesaurus cache with two

memory blocks cached in the base+diff format. The entries

share the same base but have different diffs.

correspond to the tag, coherence state, and replacement pol-

icy state of a conventional cache. The new lsh field identifies

the LSH fingerprint for the cached data, which points to the

clusteroid for this LSH in the base table (see Section 5.2.3).

The setptr field points to a set in the data array, whereas

segix identifies the segment within the set (see Section 5.2.2

for details). Finally, the fmt field identifies the cacheline as

an all-zero cacheline, a base+diff encoding, or an uncom-

pressed raw cacheline.

5.2.2 Data Array. As in a conventional cache, the data ar-

ray is organized in individually indexed sets. To facilitate the

storage of variable-length compressed diffs, however, each

set is organized as a sequence of 8-byte segments: a single

data array entry (i.e., cacheline in base+diff or raw format)

may take up anywhere from two to eight segments. To avoid

intra-set fragmentation, segments in a set are compacted on

eviction as in prior work [38, etc.].

As the data array is decoupled from the tag array, any

set in the data array can store the incoming memory blocks.

Therefore, each data array entry contains a tagptr that iden-

tifies the corresponding tag array entry. This entry is used to

evict the tag if the data array entry is removed to free space

for an incoming memory block.

Each set also contains a map called the startmap. The

startmap helps identify which segments begin new entries;

this enables intra-set compaction without the need to tra-

verse the tag array and modify the (possibly many) tag en-

tries to reflect new data locations. The startmap has as many

entries as there are segments, where each entry is one of

valid-raw, valid-diff, or invalid (128 bits total).

The startmap works in conjunction with the segix field in

the tag array: segix identifies the ordinal index in the set (e.g.,

first, second, 𝑛th, etc.), while the startmap identifies which

entries are valid. The location of the 𝑛th entry is obtained

by adding the sizes of the first 𝑛 − 1 valid-raw or valid-

diff startmap entries. Because evicted entries can set their

Base DataBase Entry

Data Entry tagptr bit-mapData Entry Uncompressed Datatagptr

tagTag Entry coh rpl fmt segixsetptr

delta(s)
(BASE+DIFF)

lsh

(RAW)

cntr

Figure 9. Top: Data array entries for uncompressed data

(left) and the base+diff/0+diff encodings (right). Bottom:

Tag entry format (left) and the base table entry that contains

base (right).
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Figure 10. The segment index (here, 5) and the startmap

combine to locate the compressed data block within a set.The

second entry (shaded grey) is invalid, so it is skipped in the

startmap. D=valid-diff, R=valid-raw, I=invalid.

startmap tags to invalid without affecting the segix for the

following entries, sets can be recompacted without updating

the tag array.

Entries can come in two flavours: raw and base+diff.

Lines stored in the raw format (Figure 9, top-left) contain a

15-bit tag pointer followed by 64 bytes of data across eight

contiguous segments. Lines in the base+diff format (Fig-

ure 9, top-right) also begin with a 15-bit tag pointer; this is

followed by a 64-bit map that identifies which bytes differ

from the base, and then by a sequence of the differing bytes.

5.2.3 BaseTable andBaseCache. To store the clusteroid

(base memory block) for each LSH fingerprint, Thesaurus

uses a global in-memory array allocated by the OS, which

we refer to as the base table. Each base table entry contains

a counter of how many current cache entries are using this

base. When the counter decreases to 0, the base is replaced

with the next incoming cacheline for that LSH, which allows

Thesaurus to adapt to changing working sets.

For performance, the base table is cached in a TLB-like

table near the LLC, which we refer to as the base cache;
for us, this is an pseudo-LRU-managed, 64-set, 8-way set-

associative structure. The entries in this cache contain the

base entry itself, an LSH tag, and replacement policy state.

5.3 Walk-through Examples
Figure 11(b) shows an example lookup the Thesaurus LLC.

First, as in a conventional cache, the address is used to in-

dex the tag array ➊; in this example, the cacheline uses the

base+diff encoding. The LSH stored in the tag entry is used

to index into the base cache and retrieve the compression

base ➋. Concurrently, the set index from the tag entry is used

to retrieve the set. The segment index from the tag entry and

the startmap from the data entry are combined to identify

the beginning of the encoded cacheline in the set ➌. Finally,

the bitmask and bytes stored in the diff entry are used to

replace the corresponding bytes from the base entry, and the

resulting line is returned ➍.

Figure 11(c) illustrates how the startmap is updated during

an eviction, showing a set before and after evicting entry

d1. Before the eviction, d1 is the second valid index in the

startmap ➊, d2 is the third, and so on. After the eviction,

the tag array entry for 𝑑1 has been invalidated ➋, the other

entries (d0, d2) have been compacted to form a contiguous

set, and the startmap entry that previously identified 𝐵 has

d0 Set0

Set0

Set1

Tag Array Data Array

Insert

t0a)

b)

d3

lookup

c)

Base Cache

0x01
0x02

 D - - - D - D - - - - -    

d0

t0

0x01
0x02

 D - - - D - D - - - - -    
t211

d2

t2

d2

22

33

d244

d1

t1

t1

d1

d0

t0

0x01
0x02

 D - - - D - D - - - - -    

t2 11

d2

t1

I
22

X

33

d0

t0

0x01
0x02

 D - - - I - D - - - - -    

t3
11

xorxor

t2

lsh(d3) = {0x01, 0x04e1} 

d3

33

22

44

xorxor

55
d3(B+D)

d2

D 66d)
lookup

Startmap

Startmap

Startmap

Startmap

Figure 11. Thesaurus structures during cache operations:

(a) initial state; (b) read request processing; (c) eviction;

(d) new entry insertion.

become invalid➌. This means that d2 is still the third overall

entry, and the tag array entries for d2 do not need to be

updated to reflect the compaction.

Finally, Figure 11(d) shows an insertion of a new entry d3.

First, the access misses in the tag array and a request is made

to the backing memory ➊. When the cacheline data arrives,

it is immediately returned to the requesting cache (e.g., L2) ➋.

In parallel, the cacheline’s LSH fingerprint is computed ➌
and used to index the base cache. In our example this access

hits and returns the data for the base ➍. The incoming line

is then xor’d with the base, and the non-zero bytes of the

resulting difference are encoded as a bitmask and a list of

differing bytes ➎; in the example, this encoding takes up 16

bytes, or two segments. Next, this entry is inserted in the

cacheline from the previous example containing d0, d2, and

d3: the invalid startmap entry is replaced by valid-diff ➏,

and the entry is inserted in the corresponding sequence in

the set ➐.

5.4 Operational Details
5.4.1 Read Requests. Figure 12 shows how Thesaurus

services a read request. Shaded areas are on the critical path,

while unshaded areas occur after the read has been serviced.

When the request is received, the address is looked up

in the tag array as in a conventional cache. If the tag hits,

the setptr is used to index the data array ➊ (for 0+diff and

base+diff formats) and, in parallel, the lsh indexes the base

cache ➋ (for base-only and base+diff formats). If the LSH

is not in the base cache, an access is made to the memory to

retrieve the base entry for that LSH (not shown).
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Figure 12. Processing a read request in Thesaurus:

(a) critical-path lookup sequence; (b) cluster ID computation

for new data brought in by a miss; (c) insertion of new data

and possible data array evictions. Shaded steps are on the

critical path, while unshaded steps are performed in parallel

with servicing the read request.

If the tag misses, a request is made to the backing mem-

ory ➌; meanwhile, the victim tag and its corresponding data

array entry are evicted and the new tag is inserted. The data

is returned to the requesting cache as soon as it arrives; in-

serting the new line in the cache happens off the critical path

as other read requests are handled.

If the newly arrived line consists of zeros, an all-zero

tag is inserted and processing ends. Otherwise, the LSH for

the newly arrived line is computed ➍, and used to index

the base cache; if the LSH is not in the base cache, the data

is inserted uncompressed (in raw format) while the base is

retrieved from the base table in memory (not shown). If there

is currently no base for the LSH, the new line is installed as

the base and processing ends ➎ by inserting a base-only tag

entry. Otherwise, the byte-difference with respect to the base

is calculated ➏; if there are no differences, the a base-only

tag is inserted and no entries in the data array are made.

For non-base entries, the diff is packed together with a

bitmask in the base+diff or 0+diff format; if compression is

not possible, the entry will use the raw format. In either case,

the appropriate tag is inserted, and a block must be added

to the data array. To make space, a data array victim set is

selected ➐ as described in Section 5.4.3; if there is not enough

space there, enough victim segments are selected to make

space for then new block, and their tags evicted ➑. Finally,

the block is inserted, possibly recompacting the set ➒.

5.4.2 Write andAtomicRequests. Accesses that modify

the data can change the mode of compression or the size of

the compressed block. If the diff is smaller, the data array

entry is either removed (for all-zero or base-only) or the

block’s bitmap is updated and the set is compacted. If the

diff is larger, other entries are evicted from the set to make

space ➑, and the set is updated and compacted.

For write operations in memory models without write

acknowledgements (most extant ISAs), the entire write is

performed off the critical path. For atomic read-modify-write

operations (e.g., compare-and-swap), the read part is serviced

as soon as possible, and the write part is completed off the

critical path.

5.4.3 Replacement Policies. The tag array follows the

corresponding conventional replacement policy (in this pa-

per, we use pseudo-LRU); the base cache follows pseudo-LRU.

Unlike in a conventional cache, however, the data array entry

requires a separate replacement policy: in this case, a policy

that favours evicting fewer data entries over recency makes

sense, as not-recently-used data array entries will have been

evicted anyway by the tag array replacement policy.

To choose a victim set, we use a best-of-𝑛 replacement

policy [21, 55]. First, we randomly select four sets. If one

of the sets has enough free segments to store the incoming

(possibly compressed) block, it is chosen and no evictions are

made; otherwise, we select the set with the fewest segments

that would have to be evicted to make enough space.

Observe that the randomness ensures that frequently used

blocks do not evict each other in a pathological pattern: if a

block is evicted and soon thereafter reinserted, it will likely

end up in a different set than the block that evicted it.

6 Evaluation
6.1 Methods
To evaluate effects on cache behaviour and performance,

we implemented Thesaurus and the comparison baselines in

the microarchitecture-level simulator ZSim [42]. We simu-

lated an out-of-order x86 core similar to an i5-750, modelling

on- and off-critical-path events as well as limited intercon-

nect bandwidths; the simulated system is shown in Table 1.

Compression was applied at the LLC level only.

To estimate silicon area and power impacts, we imple-

mented all logic that is required in Thesaurus but not in a

conventional cache in Verilog RTL, and synthesized these

with Synopsys Design Compiler tool using FreePDK45 [53]

standard cell library. We used CACTI 6.5 [33] to estimate the

area, access time, and power of storage structures.

As the baseline, we modelled a conventional (uncom-

pressed) LLC with 1MB capacity per core; we also modelled a

hypothetical LLC with 2× the capacity (2MB), which has an

CPU x86-64, 2.6GHz, 4-wide OoO, 80-entry ROB

L1I 32KB, 4-way, 3-cycle access lat., 64B lines, LRU

L1D 32KB, 8-way, 4-cycle access lat., 64B lines, LRU

L2 Private, 256KB, 8-way, 11-cycle lat., 64B lines, LRU

LLC Shared 1MB, 8-way, 39-cycles lat., 64B lines, 8 banks

Memory DDR3-1066, 1GB

Table 1. Configuration of the simulated system.
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Conv. BΔI Dedup Thesaurus

Ta
g

#Entries 16384 32768 32768 32768

Entry Size 37b 47b 81b 72b

Total Size 74KB 188KB 324KB 288KB

D
at
a #Entries 16384 14336 11700 11700

Entry Size 512b 512+0b 512+16b 512+32b

Total Size 1024KB 896KB 754KB 777KB

D
ic
t. # Entries - - 8192 512

Entry Size - - 24b 24+512b

Total Size - - 24KB 33KB

Total Size 1.07MB 1.06MB 1.07MB 1.07MB

Table 2. Storage allocation. All compressed caches were

sized to fit in the same silicon size of a 1MB conventional

cache with a 48-bit address space. TheDict. category accounts

for the hash array required by Dedup and the base cache

required by Thesaurus.

effective capacity similar to a 1MB Thesaurus cache. To study

relative improvements over prior state-of-the art intra- and

inter-cacheline compression, we also implemented BΔI [38]

and Dedup [55]. All compressed configurations (Thesaurus,

Dedup, BΔI) were sized to occupy the same silicon area as

the baseline LLC: Table 2 compares the storage allocations.

To find a suitable LSH size, we swept sizes of 8–24 bits.

We found that 12-bit LSHs result in good compression for

most workloads while keeping the base table size low.

We evaluated all designs on the SPEC CPU 2017 suite [7].

For each benchmark, we skipped the first 100B instructions,

and executed the last 20% of each 1B instructions. For miss

rate and speedup measurements, we split the benchmarks

into cache-sensitive (S) and cache-insensitive (NS). In our

evaluation, a benchmark was considered cache-sensitive if

doubling the cache size to 2MB improves the MPKI by more

than 10%. (In a practical implementation, the LLC could dy-

namically detect cache-insensitive workloads by measuring

average memory access times and disable LLC compression.)

6.2 Compression, Miss Rates, and Speedup
Figure 13 shows the improvements over the uncompressed

baseline and state-of-the-art compressed caches. We also

compare against the ideal clustering method (which searches

the entire cache for the nearest match and diffs against it in

one cycle) and a conventional cache with 2× the capacity.

Figure 13(a) shows the effective cache footprint reduc-

tion — i.e., the data array space taken up by the cached ad-

dresses normalized to the equivalent space that would have

been required to hold the same addresses in a conventional

cache. Overall, Thesaurus compresses the working sets by

2.25×, compared to 1.28× for exact deduplication and 1.48×
for BΔI compression (all geomeans); this demonstrates that

Thesaurus compresses more effectively than state-of-the-art

cache compression techniques.

The LSH scheme in Thesaurus also captures nearly all data

that can be effectively clustered: the cache footprint obtained

using Thesaurus is within 5% of the ideal clustering scheme,

which searches the entire cache for the nearest match. In a

few cases, compression is, in fact, slightly better (e.g., povray,

perlbench, gcc): this is because Thesaurus can diff against a

clusteroid whose tag has since been evicted from the cache,

while the ideal clustering model is restricted to currently

cached entries.

Figure 13(b) shows that Thesaurus substantially reduces

miss rates: for the cache-sensitive subset of the suite, MPKI

drops to 0.78 of the conventional cache compared to 0.98

for exact deduplication and 0.89 for BΔI (all geomeans). The-

saurus is also within 1.5% of the ideal clustering model, and

within 8% of the MPKI that can be attained with a conven-

tional cache with 2× capacity. This is because, thanks to the

effective compression, more data can be cached within the

same silicon area, which benefits cache-sensitive workloads.

Finally, Figure 13(c) shows that the reduced MPKI rates

result in execution time speedups over the baseline as well as

Dedup and BΔI. Thesaurus is up to 27.2% faster than the con-

ventional baseline (7.9% geomean), and up to 9.1% faster than

BΔI (5.4% geomean). Indeed, performance is within 1.1% of

the ideal clustering model, and within 2.2% of a conventional

cache with 2× capacity.

6.3 Cost Analysis
Power. We used CACTI 6.5 [33] to estimate the read en-

ergy and leakage power of all cache structures; the results

are shown in Table 3. While Thesaurus uses ∼12% more en-

ergy for each read and has a ∼14% leakage power overhead,

these overheads are significantly lower than ∼57% increase

in dynamic energy and ∼70% increase in leakage power for

conventional cache with the same effective capacity.

Most importantly, the overhead of Thesaurus (∼0.06nJ per

access at the 45nm node) is trivial compared to the energy

of accessing external DRAM (32.61nJ using the same CACTI

model). This means that Thesaurus can actually save energy

when the entire memory hierarchy is considered. In order

to measure this, we calculated the total added power of com-

pressed cache (30.54mW + 6.4mW + 0.06nJ × access rate)

and total power saved by accessing off-chip DRAM less fre-

quently (32.61 nJ × access rate difference between Thesaurus

and uncompressed).

While the power consumption of the Thesaurus LLC in-

creases (from 36.87mW to 51.28mW) because of the added

logic and more data array reads (due to the higher LLC hit

rate), accounting for DRAM accesses results in power con-

sumption savings of up to 101mW in the cache sensitive

benchmarks. Cache-insensitive benchmarks do not see fewer

off-chip DRAM accesses despite effective compression, and

therefore power overheads are not outweighed by power

savings; however, a practical implementation would detect
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Figure 13. Compressed working set size, cache miss rates, and performance improvements of Thesaurus compared to baseline

(uncompressed) cache, iso-silicon BΔI (intra-block) and Dedup (inter-block), Ideal-Diff, and an uncompressed cache with 2×
capacity. All but ideal and 2× baseline are sized to the silicon area of the uncompressed cache.

cache-insensitive workloads and simply disable compression

for cachelines they access.

Latency. We modelled access times to each LLC structure

using CACTI; because compressed caches have smaller data

array sizes, its overall access time is slightly reduced (∼2%

for Thesaurus). To measure compression and decompression

latencies, we implemented the logic for compression, decom-

pression, as well as locating and reading the compressed

cachelines in 45nm ASIC; the results are shown in Table 4.

At the relevant CPU frequency (2.66GHz), compression and
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Figure 14. Difference in total power consumption using

Thesaurus compared to the baseline. Positive values indicates

less power consumption whereas negative values shows

additional power consumption.

45nm 32nm
dynamic leakage dynamic leakage

energy power energy power

Conv. 0.50 nJ 205.47 mW 0.28 nJ 109.96 mW

BΔI 0.55 nJ 196.47 mW 0.31 nJ 105.22 mW

Dedup 0.56 nJ 226.33 mW 0.32 nJ 121.06 mW

Thesaurus 0.56 nJ 236.01 mW 0.31 nJ 125.85 mW

Conv. 2× 0.78 nJ 349.21 mW 0.44 nJ 186.50 mW

Table 3. Dynamic read energy and leakage power per

bank of compressed and conventional caches scaled to the

same silicon area (1MB uncompressed = 5.56mm
2

in 45nm

or 2.82mm
2

in 32nm).

decompression take one cycle each, while locating the com-

pressed data block in the set (described in Section 5.2.2) takes

four more cycles. This brings the total decompression latency

to 5 cycles, which we used for the performance simulations.

Area. The logic required for Thesaurus incurs an area

overhead of 0.06mm
2

in 45nm: this includes the compression

(0.016mm
2
) and decompression (0.013mm

2
), the logic to lo-

cate the segments in the set using the indirect segix encoding

10
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latency dynamic leakage area

power power

comp. 1 cycle 0.116 mW 2.44 mW 0.016𝑚𝑚2

decomp. 1 cycle 0.084 mW 1.74 mW 0.013𝑚𝑚2

segix 4 cycles 0.035 mW 0.49 mW 0.007𝑚𝑚2

multi-bank - 0.101 mW 1.42 mW 0.025𝑚𝑚2

Table 4. Synthesis results for the added logic area of

Thesaurus: segix refers to locating the compressed block

within a set (decoding the indirect segix format), while

multi-bank refers to the muxing needed to access lines

across multiple banks; 64-byte cachelines were used. La-

tency is in units of CPU cycles at the 2.66GHz frequency

of the equivalent 45nm i5-750 core. All results obtained

Synopsys DC and the 45nm FreePDK.
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Figure 15. Fraction of cache insertions that are potentially

compressible with respect to their clusteroid (avg. 87%).

(0.007mm
2
), and the additional muxing needed to read a set

across multiple banks (0.025mm
2
). This is equivalent to 1%

of the silicon area required for even a 1MB cache, and a tiny

fraction of a 4-core i5-750 in the same 45nm node (296mm
2
).

To compare with prior compressed caches, we also im-

plemented and synthesized the BΔI scheme [38], which at

0.037mm
2

(20k nand gates) is slightly smaller than The-

saurus (0.06mm
2

or 32k nand gates); this is not surprising as

BΔI offers much less compression. We also used nand-gate

estimates for prior work from [10, 56] to compare against

other prior compression schemes, all of which incur more

area overhead than Thesaurus: C-PACK [10] needs 0.075mm
2

in 45nm (40k nand gates) and FPC [2] needs 0.544mm
2

(290k

nand gates) just for decompression [10], while BPC [28]

needs 0.127mm
2

(68k nand gates).

6.4 Clustering and Compression Details
To investigate the effectiveness of cacheline clustering based

on locality-sensitive hashing, we first examined how many

cache insertions are, in fact, compressed. Figure 15 shows

that, on average, 87% (a significant majority) of cache in-

sertions can potentially result in compression — i.e., their

differences versus the relevant clusteroid are small enough

that encoding them would take < 64 bytes even with the over-

head of the difference bitmask. This observation validates

both our choice of LSH for clustering and the effectiveness of

our clusteroid selection strategy to increase compressibility.
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Figure 16. Distribution of clusters (= same LSH) with differ-

ent sizes (average over the runtime of each benchmark).

bw
av

es

ca
ctu

BSSN
ca

m4

de
ep

sje
ng

ex
ch

an
ge

2

fo
ton

ik3
d
gc

c

im
ag

icklbmlee
la
mcfna

b
na

md

om
ne

tpp
pa

res
t

pe
rlb

en
ch

po
vr

ay
ro

ms
wrf

x2
64

xa
lan

cb
mk xz

Ave
rag

e
  0%

 20%

 40%

 60%

 80%

100%

%
 o

f 
m

em
or

y 
bl

oc
ks B+D 0+D Z RAW

Figure 17. Frequency of different compression encodings

in compressing benchmarks from SPEC. B+D=base+diff;

0+D=0+diff; RAW=uncompressed; Z=all-zero.

Figure 16 shows that most working sets have many small

clusters rather than few large clusters. Nevertheless, because

Thesaurus tracks clustroids for many LSH fingerprints, ef-

fective compression can still be obtained.

Next, we examined the compression encodings used by

Thesaurus. Figure 17 shows that different workloads tend to

benefit from different encodings. For most of the benchmarks,

the byte-difference-based encodings are the most effective:

the base+diff encoding covers an average of 76.2% of LLC

insertions, while 0+diff covers a further 13.2%. Another

6.1% are covered by the all-zero encoding. Finally, 17.7%

of LLC insertions are left uncompressed as the diff from the

clusteroid (base) is too large.

Figure 18 shows the average size of the byte-difference

block for the base+diff and 0+diff encodings. In most cases,

the differences tend to be small, with a quarter of the bench-

marks averaging about 8 bytes or less, and half of the bench-

marks averaging about 16 bytes or less. This confirms that, for

many benchmarks, caches have relatively tight data clusters

with very small intra-cluster differences even at cacheline

granularity.
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Figure 18. The average size of the byte difference from the

relevant clusteroid for base+diff and 0+diff, in # bytes.
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Figure 19. How the diff size varies over time: 1 million cache

insertions after skipping the first 40B instructions.

In fact, diff sizes can change significantly over the run time

of even a single workload. Figure 19 shows the diff sizes for 1

million cache insertions after the first 100 billion instructions

for four workloads. In mcf, the data compression ratios are

relatively stable; in xalancbmk, the tiny diffs of most accesses

are punctuated by rare spikes of 32-byte diffs; bwaves has

two distinct but small diff sizes; finally, cam4 intersperses

blocks that offer little compression with periodic short bursts

of compressible data.

Together with the number of insertions that can be com-

pressed (Figure 15), the diff sizes explain the compression

ratios for each benchmark. For example, more than 90% of in-

serted blocks in imagick can be compressed, but the average

diff size is 32.6 bytes, resulting in a compression ratio of 1.3×
(see Figure 13). In contrast, xalancbmk and mcf combine a

high (> 90%) proportion of compressible insertions with a

small average diff size (6 and 9 bytes, respectively), for a total

compression factors of 2.6× and 3.7×.

Finally, we established an efficient size for the base cache

and examined its effectiveness. To establish size, we swept

sizes ranging from 32 to 2048 entries; results are shown in

Figure 20. Compared to a 94.8% hit rate for a 512-entry cache

(33KB), a 2048-entry cache (+100KB storage) increases the

hit rate by only 3.9%; we therefore used a 512-entry base

cache for the remainder of our experiments.

32 128 512 1024 2048
number of entries in the base cache

  0%

 25%

 50%

 75%

100%

ba
se

 c
ac

he
 h

it 
ra

te

  0

100

200

  0

100

st
or

ag
e 

co
st

 (
K

B
)

hit rate
cost

Figure 20. Base cache hit rate (left axis) and storage cost

(right axis) for different base cache sizes.

On average, this cache has a 5.2% miss rate over all bench-

marks; however, all but 8% of misses (i.e., all but 0.5% of

accesses) miss when a line is being inserted in the cache, and

are off the critical path. Because the data is inserted uncom-

pressed while the clusteroid (base) is fetched into the cache,

these misses represent a missed compression opportunity

but do not affect insertion latency.

Nevertheless, the lost compression opportunities due to

base cache misses can have a significant impact. The bench-

marks with high off-critical-path base cache miss rates —

bwaves, nab, namd, x264 and, wrf with 8–13% — also lose the

most compression opportunity compared to the idealized

Ideal-Diff clustering (cf. Figure 13). For those workloads, a

larger base cache would improve compression.

7 Related work
Prior work on cache compression can generally be catego-

rized into three categories based on their compression granu-

larities: (i) inter-block data compression, (ii) intra-block data

compression, and (iii) techniques that do not operate at block

granularity. Below, we briefly outline past proposals in all of

these categories, and discuss prior work on orthogonal ideas

on effective replacement policies with compression.

Inter-Block Data Compression. Inter-block data dedu-

plication techniques leverage the observation that many

cache blocks are either entirely zero [14, 15, 38] or are copies

of other blocks that concurrently reside in the cache [11, 13,

24, 50, 55]. Instead of storing several identical copies, they

aim to store only one copy of the block in the cache, and

propose techniques to point the redundant data entries to

this single copy.

To address the inter-block redundancy at the cache level,

Dedup [55] modified a conventional cache to store one copy

of the redundant data and allow multiple tags to pointing

to the unique copy. Although the tag array is still arranged

in sets and ways, the data array is decoupled from the tag

array, and is designed to be explicitly accessed by pointers. In

order to detect duplication, an augmented hashing technique

is used for faster duplication detection. Thereafter, a quick

look-up occurs in the hash table indexed by the hashed data.

Intra-Block Data Compression. For some applications,

data values stored within a block have a low dynamic range

resulting in redundancies [2, 38, 57]. Prior work categorized

these into (a) repeated values (especially zeros) repeated in

a data block, and (b) near values with the same upper data

bits and different lower bits.

One way to reduce redundancy within the memory block

is to capture the replicated data in dictionary entries and

then point to that entry when new replicated data is pre-

sented. Frequent pattern compression [2] does this on a word-

by-word basis by storing the last 16 observed values as a

dictionary. Similarly, [57] uses an LZ77-like compression

algorithm by reading through the input data word by word

12
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and constructing a dictionary of observed sequences. The

authors of [26] propose a small cache placed alongside the

L1 data cache to store memory locations with narrow values;

this compactly stores each 32-bit word at 1-, 2-, 4-, and 8-bit

granularity.

Another method to reduce redundancy of nearly identical

values is to try to separate repeated parts of values from

distinct lower bits in a memory block. DISH [36] extracts

distinct 4-byte chunks of a memory block and uses encoding

schemes to compress them, with dictionaries potentially

shared among a few contiguous blocks. It uses a fixed-width

pointer that points to one of the 𝑛 dictionary entries: i.e.,

a cache block is encoded as a dictionary, some fixed-width

pointers, and some lower-bit deltas for each 4-byte chunk.

BΔI [38] uses one word-granularity “base” value for each

compressed cache block, and replaces the other words in

the block with their distances from the base value. BΔI is

can compress zero lines, as well as various combinations of

base value and offset sizes; the type of compression selected

is encoded in the tag entry metadata. A data block is logi-

cally divided into eight fixed-size segments, and compressed

blocks are stored as multiple segments allocated at segment

granularity.

SC
2

[5] uses Huffman coding to compress memory blocks,

and recomputes the dictionary infrequently, leveraging the

observation that frequent values change rarely. HyComp [4]

combines multiple compression algorithms and dynamically

selects the best-performing scheme, based on heuristics that

predict data types. Bit-Plane Compression [28] targets ho-

mogeneous arrays in GPGPUs to both improve the inherent

data compressibility and to reduce the complexity of com-

pression hardware over BΔI by compressing the deltas better.

To reduce tag overhead of the compressed cache, DCC [47]

and SCC [44] use “superblocks” formed by grouping adjacent

memory blocks in the physical address space. More recently,

YACC [45] was proposed to reduce the complexity of SCC

by exploiting spatial locality for compression.

Broadly, intra-block methods are useful in compressing

one block or possibly a “superblock” of contiguous memory

blocks. However, they do not consider value redundancy

among different non-contiguous memory blocks at far-away

addresses, which still leads to repeated (albeit potentially

compressed) data values in different parts of the cache.

Non-Block-Granularity Compression. Unlike scien-

tific applications, whose working sets are often dominated

by arrays of primitive-type values, many general-purpose

applications traverse and operate on blocks. Based on this in-

sight, Cross-Block-Compression algorithm (COCO) [56] uses

data structure blocks (rather than cache blocks) as the unit of

compression. The authors also present the first compressed

memory hierarchy designed for block-based applications.

Replacement PoliciesWithCompression Prior works

have also looked at the impact of compression on cache re-

placement policy. ECM [6] reduces the cache misses using

Size-Aware Insertion and Size-Aware Replacement. CAMP [37]

exploits the compressed cache block size as a reuse indicator.

Base-Victim [20] was also proposed to avoid performance

degradation due to compression on the replacement. These

proposals are effective for intra-cacheline compression, but

do not consider the inter-cacheline interactions present in

Thesaurus and Dedup [55].

8 Summary
In this paper, we have demonstrated that inter-cacheline

compression can be very effective if small differences among

the cached memory blocks are allowed. We proposed The-

saurus, an LLC compression based on dynamic cluster de-

tection, and described an efficient implementation based on

locality-sensitive hashing. Across SPEC CPU 2017, Thesaurus

compresses LLC working sets 2.25× (geomean), compared

with 1.28×–1.48× (geomean) achieved by state-of-the-art

LLC compression schemes.
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