
Sunstone: A Scalable and Versatile Scheduler for
Mapping Tensor Algebra on Spatial Accelerators

MohammadHossein Olyaiy∗, Christopher Ng∗, Alexandra (Sasha) Fedorova, Mieszko Lis
The University of British Columbia

{mohamadol, chris.ng, sasha, mieszko}@ece.ubc.ca

Abstract—Tensor algebra, the main component of several
popular machine learning techniques, benefits from modern ac-
celerators due to the massive parallelism and data reuse available.
To achieve the benefits, however, optimizing the dataflow is
crucial: prior works showed that 19× energy savings are possible
by tuning the dataflow. This optimization is challenging because:
(1) the optimization space for modern chip architectures with
several levels of memory and multiple levels of spatial processing is
vast, and (2) distinct tensor computations follow different memory
access and reuse patterns.

In this manuscript, we algebraically analyze the possible reuse
when executing tensor workloads on an accelerator. Based on our
analysis, we develop several principles that significantly reduce the
dataflow optimization space even for modern, complex chip ar-
chitectures. Moreover, these principles are transferable to various
tensor workloads with different memory access patterns.

Compared to prior work, our techniques can find dataflow for
typical tensor workloads up to 800× faster and with up to 1.9×
better energy-delay products.

Index Terms—dataflow computing; accelerator architectures;
scheduling algorithms; neural network hardware; parallel pro-
cessing;

I. Introduction

Both modern and classic machine learning (ML) tech-
niques rely heavily on tensor algebra. Some common examples
include convolution for computer vision [34, 45, 50], tensor
factorization for social networks [13, 48], compressing neural
networks [29, 38], and embedding generation for recommender
systems [6, 19]. Since the computation pattern of tensor al-
gebra is predictable, and because of the massive parallelism
and the ample data reuse available, several dedicated tensor-
compute accelerators have been proposed [10, 20, 23, 30, 44,
46, 53, 61, 67, 69]. Most of these comprise array(s) of process-
ing elements (PEs) arranged in a 1D or 2D grid, paired with
a multi-level memory hierarchy [10, 20, 23, 30, 44, 46, 67].

While specialized tensor-compute accelerators achieve bet-
ter performance and efficiency over general-purpose CPUs and
GPUs [26, 30], a key challenge is how to schedule a tensor
computation on the accelerator. This problem, called dataflow
optimization, significantly impacts performance [7, 10, 43, 68].
For example, Timeloop has shown that better dataflows can
make inference 19× more energy efficient.

The reason dataflow optimization is challenging is twofold.
First, the search space is non-convex, non-differentiable, and
astronomically large. For example, temporal and spatial tiling

∗These authors contributed equally.

choices, as well as interchanging independent loops, yield on
the order of 1019 solutions even for executing one convolution
(conv) layer on a conventional accelerator [7]. This problem
becomes even more severe as recent state-of-the-art (SOTA)
accelerator designs include more memory levels and multiple
levels of parallel processing primitives on a single chip [3,
12, 46, 60], which exponentially increases the combination of
potential spatiotemporal tilings and loop orderings in each level.
Ideally, dataflow optimization techniques should be scalable and
still find optimized dataflow in a reasonable time as accelerators
include more levels in their architecture.

Although several proposals have been made for scheduling
workloads on tensor-compute accelerators, many of these [14,
43, 68] have been designed for an accelerator with 2 or 3
levels of memory and only a single level of spatial processing
(e.g., a flat PE grid). However, recent research from the
architecture community shows that having more memory and
parallel processing levels (Fig. 1b) results in more efficient
hardware [12, 46, 60]: for example, in MAGNet [60] increasing
the size of vector computation unit inside the PE improves
the energy efficiency due to the more spatial reuse available.
Meanwhile, Simba [46] showed that small registers with low
access energy inside the vector MACs could facilitate the reuse
of some operands over several MAC operations.

The fixed-number-of-levels assumption means that prior
schedulers either do not support these modern, more efficient
architectures [14, 68] or become extremely slow and ineffi-
cient [43] when applied to them; this inefficiency usually leads
to early termination of the search and a suboptimal solution.
When considering the more recent architectures such as [46],
Timeloop is often the only available mapper, and it also can only
be invoked if the user significantly constrains the search space
(Section V), leading to suboptimal mappings.

To achieve scalable optimization, we must dramatically shrink
the optimization space. Based on the observation that perfor-
mance requires maximizing data reuse [10, 43], we analyze
mathematical equations that represent reuse, and based on this
analysis, propose a principled approach to mapping search.

Our key observation is that during the dataflow optimization
of a single memory or parallel processing level, only some
problem dimensions improve the reuse — and therefore only
those need to be considered. This means fewer optimization
space dimensions to consider at each level without losing the
ability to discover optimal solutions — and, consequently,
scalability as more levels of memory and spatial processing

TABLE I: Number of dimensions that construct the space under optimization for each tool and the size of this space for an
example convolution layer. Since some tools rely on empirical-based heuristics to reduce the optimization space, they can often
find suboptimal or invalid mappings.

Timeloop [43] CoSA [28] Marvel [7] Interstellar [68] dMazeRunner [14] ours
dimensions to

build each temporal
level tile

all the dimensions (7) only the reuse
dimensions (4)

dimensions to
unroll at each
spatial level

all the dimensions (7)
input and

output channel
dimensions (2)

dimensions that
do not need

spatial reduction (4)

only the reuse
dimensions (4)

pruning methods
to reduce the

space
nothing

linear approximation
to use linear
optimizers

decoupled off-chip
and on-chip, high
buffer utilization

high throughput
high buffer
utilization,

high throughput

alpha-beta,
high throughput

estimated space size
3.69 × 1010

similar to Timeloop,
1.36 × 109 1.40 × 109 1.97 × 105 5.89 × 103for an Inception V3 but blackbox optimizer

example layer might prune it
worse mappings yes, up to 1.9× yes, up to 1.5× not open source yes, up to 1.4× yes, up to 1.1× nothan other tools? worse EDP worse EDP worse EDP worse EDP

invalid mappings? no yes, 60% of the time not open source yes, 10% of the time yes, 30% of the time no

are added.
Table I compares the characteristics of the optimization

process of prior tools with our method. Observe that all the prior
optimizers use all seven dimensions to create the optimization
space for each temporal tiling level, and most of them do the
same for each spatial unrolling level, too. Our observations,
in contrast, help us identify only the necessary dimensions at
each temporal or spatial level (4 dimensions for the convolution
example in Table I). As a result, the search space is much smaller
than what prior tools are optimizing — as much as 107× smaller.

The second challenge behind dataflow optimization is that
computation and memory access patterns, and therefore the
reuse behavior, of various tensor applications can vary sig-
nificantly [53, 66]. Ideally, a dataflow optimizer should auto-
matically infer the reuse characteristics of a given workload to
support a broad range of tensor computations. We refer to this
as the versatility of the optimizer.

Unfortunately, most prior dataflow optimization proposals [7,
14, 28, 40, 68] are designed for a specific tensor operation, such
as convolution. As a result, they do not work on other important
tensor computations, such as matricized tensor times Khatri-
Rao product (MTTKRP) [51] or tensor-times-matrix chain
(TTMc) [2], used in various fields, including neural network
compression [21, 29, 38] and recommender systems [6, 19].

In contrast, our observations for reducing the search space
are based on algebra rather than workload-specific heuristics.
They can be applied to several tensor workloads, including
MTTKRP, TTMc, and convolution. As a proof-of-concept, we
developed Sunstone, a scheduler that implements our algebra-
derived optimization techniques using novel intermediate rep-
resentations (IRs) for each search stage. As we will demonstrate
in Section V, Sunstone is up to 800× faster than the prior
schedulers, covers many tensor workloads, and scales to modern
hierarchical architectures. Our key contributions are:
• algebra-based dataflow optimization techniques that not

only are transferable to various types of tensor algebra
workloads but also significantly reduce the optimization
space for them without rejecting good solutions;

• access and compute IRs that help to automatically analyze
reuse information, remove search space dimensions, and
optimize the dataflow;

• an open source, proof-of-concept optimizer available in our
GitHub repository†.

II. Background

A. DNN accelerator architecture

Fig. 1a shows the architecture of a conventional DNN
accelerator [1, 10, 11, 17, 23, 44, 67, etc.] implemented as a 2D
array of processing elements (PEs). Each PE has a multiply-
and-accumulate (MAC) functional unit and local (L1-level)
memories; these either consist of separate memories for each
datatype (i.e., ifmap, weights, and ofmap) or are unified
memories that store all three datatypes. L1 is commonly double-
buffered to overlap computation and memory refill.

The PE of a modern accelerator, shown in Fig. 1b, is different
from a conventional one. Specifically, instead of a single MAC
unit, a Simba-like [46] PE has a row of vector MACs and
registers. Furthermore, the PE has a distributed buffer that can
supply different operands to each of the vector MACs, and a
broadcast buffer that broadcasts to all the units. Lastly, each of
the registers in a vector MAC reuses one of the MAC’s operands
temporally over several MAC operations.

Accelerators also commonly include a larger memory shared
among the PEs (L2-level) and a large off-chip DRAM. The
PEs and L2 are typically interconnected via a simple on-chip
interconnect per datatype [10].

This architecture supports three kinds of reuse. First, operands
may be reused spatially: that is, broadcast to a subset of (or
all) PEs or, within the PEs shown in Fig. 1b, broadcast to all
the vector MACs. L1 memories support short-term temporal
reuse of operands within each PE; finally, L2 memories support
temporal reuse across multiple PEs.

†https://github.com/compstruct/sunstone

Shared Global Memory (L2)
of
f-c
hi
p
m
em

or
y

Network on Chip (NoC)

.....
.....

.....

Spatial Accelerator Chip

PE PE PEPE PE PE

PE1

Operand
buffer 1

Operand
buffer 2

Accumulation
buffer

+ / ×

(a) A conventional accelerator with one level of spatial processing.

.....

.....

Shared Global Memory (L2)

of
f-c
hi
p
m
em

or
y

Network on Chip (NoC)

.....
.....

.....

Spatial Accelerator Chip

PE PE PEPE PE PE

PE1

Distributed
Buffer

crossbar

vector
MAC

vector
MAC

vector
MAC

broadcast
buffer

Accumulation
buffer

(b) A modern accelerator with multiple levels of spatial processing.

Fig. 1: Spatial accelerator architectures

B. Tensor algebra workloads
We target tensor computations that consist of nested loops

with no inter-loop dependencies, i.e., loops that can be freely
reordered. The computations may include sliding-window ac-
cess patterns, as found in, e.g., convolution operations. These
workloads span a range of real-life problems, such as convo-
lution layers and fully connected layers for neural networks,
MTTKRP [51] and TTMc [2] (bottleneck kernels in tensor
decompositions), and various tensor contraction workloads
that permeate the optimization domain [16, 33, 35, 49, 54, 58].
Table II shows examples of the tensor algebra we target, their
distinct memory access patterns, and diverse applications.

C. Dataflow mapping
Dataflow mapping consists of tiling, loop reordering, and

spatial unrolling. To explain each with a concrete example,
we consider the convolution of 𝐾 1D filters of length 𝑅 with
1D input feature map (ifmap) of size 𝑃 to generate 𝐾 output
feature maps (ofmap) of size 𝑃:

ofmap[𝑘, 𝑝] =
∑︁
𝑟

ifmap[𝑝 + 𝑟] × weight[𝑘, 𝑟] .

Typically, this is expressed as a nested loop [43] similar
to Algorithm 1:

Algorithm 1 1D convolution algorithm

1: for 𝑘 ← [0, 𝐾) do
2: for 𝑝 ← [0, 𝑃) do
3: ofmap[𝑘, 𝑝] ← 0
4: for 𝑟 ← [0, 𝑅) do
5: ofmap[𝑘, 𝑝] += ifmap[𝑝 + 𝑟] × weight[𝑘, 𝑟]

This defines a 3D operation space of 𝐾×𝑃×𝑅MAC operations
shown in Fig. 2a, where the operands for each MAC can be
obtained by projecting its point in the operation space onto the
“walls.” The walls thus correspond to the accessed elements of
the ifmap, ofmap, and weight tensors.

P
IFMAP

K

R

(p,
k) (k, r)

P

.....
.

3
2

P

.....
.

3
2

1

P

......
3(p, r)

(k, r, p)

(a) operation space

K

KL2

PL2

1
2

1 2

.

.

.

R
P

Tile
3

Tile
4

I1
Tile

2

I1

P L1

O1
W1
K
L1 Tile

1

P L1

K
L1

...

(b) operation space tiling

Fig. 2: Operation space of 1D convolution. Ifmap is shifted,
replicated, and 0-padded along the sliding window dimension
R. After tiling, 𝑃 dimension is divided into 𝑃𝐿2 tiles of size 𝑃𝐿1,
and 𝐾 dimension into 𝐾𝐿2 tiles of size 𝐾𝐿1.

Tiling. The per-PE (L1) memories are far too small to contain
the entire ifmap, ofmap, and weight tensors. Thus, the operation
space must be tiled into L1 tiles with memory footprints that fit
in the L1 memories to support temporal reuse.

Fig. 2b shows this for the running convolution example. The
volume of each tile shows the MAC operations performed in this
tile, while the surfaces W1, O1, and I1 correspond to the regions
of the weight, ofmap, and ifmap accessed. If these are stored in
L1 memories, they can be reused: e.g., W1 can be temporally
reused across the 𝑃 extent of the tile.

This corresponds to the pseudocode of Algorithm 2, where
the 𝐾 dimension is divided into 𝐾𝐿2 equal tiles of size 𝐾𝐿1, and
the 𝑃 dimension into 𝑃𝐿2 equal tiles of size 𝑃𝐿1:

Algorithm 2 a 2-level tiled 1D convolution algorithm

1: for 𝑘2 ← [0, 𝐾𝐿2) do
2: for 𝑝2 ← [0, 𝑃𝐿2) do
3: for 𝑘1 ← [0, 𝐾𝐿1) do
4: for 𝑝1 ← [0, 𝑃𝐿1) do
5: 𝑘 ← 𝑘2 × 𝐾𝐿1 + 𝑘1
6: 𝑝 ← 𝑝2 × 𝑃𝐿1 + 𝑝1
7: ofmap[𝑘, 𝑝] ← 0
8: for 𝑟 ← [0, 𝑅) do
9: ofmap[𝑘, 𝑝] += ifmap[𝑝 + 𝑟] × weight[𝑘, 𝑟]

L2 tile

L1 tile

Loop reordering. In addition to the intra-tile reuse described
above, some tensor regions can be further temporally reused over
multiple tiles. In Fig. 2b, for example, region W1 can remain in
L1 if tile 2 is processed in the same PE right after tile 1 (as
in Algorithm 2).

We can control what is reused between tiles by chang-
ing the tile traversal order. We will write orders by list-
ing loop bounds outermost-to-innermost, so the pseudocode
above is 𝐾𝐿2𝑃𝐿2𝐾𝐿1𝑃𝐿1𝑅. If we swap lines 1 and 2 (order
𝑃𝐿2𝐾𝐿2𝐾𝐿1𝑃𝐿1𝑅), tile 4 will be processed right after tile 1,
reusing the I1 region of ifmap in L1.

Spatial unrolling. Finally, loops can be spatially unrolled so
that different tiles are assigned to different PEs. For example, in
Fig. 3 the 𝐾 dimension is unrolled spatially across two PEs, so
tiles 1 and 4 will be computed by PEs 1 and 2 in the first step, and
then tiles 2 and 3 in the next. This allows inter-tile spatial reuse:

TABLE II: Representative tensor computations
Workload Algebraic Definition Application Application Instance

Conv ofmap[𝑝, 𝑞, 𝑘, 𝑛] = ∑
𝑐,𝑟,𝑠
(ifmap[𝑝 + 𝑟 , 𝑞 + 𝑠, 𝑐, 𝑛] × 𝑤 [𝑟 , 𝑠, 𝑐, 𝑘]) CNN ResNet [24], Inception-v3 [55]

MTTKRP out[𝑖, 𝑗] = ∑
𝑙,𝑘

(𝐴[𝑖, 𝑘, 𝑙] × 𝐵[𝑘, 𝑗] × 𝐶 [𝑙, 𝑗]) CP-Decomposition nell2 [52], netflix [52], poisson1 [52]

SDDMM out[𝑖, 𝑗] = 𝐴[𝑖, 𝑗] × ∑
𝑘

(𝐵[𝑖, 𝑘] × 𝐶 [𝑘, 𝑗]) Alternating Least Squares bcsstk17 [15], cant [15]

TTMc out[𝑖, 𝑙, 𝑚] = ∑
𝑘, 𝑗

(𝐴[𝑖, 𝑗 , 𝑘] × 𝐵[𝑗 , 𝑙] × 𝐶 [𝑘, 𝑚]) Tucker Decomposition nell2 [52], netflix [52], poisson1 [52]

MMc out[𝑖, 𝑙] = ∑
𝑘, 𝑗

(𝐴[𝑖, 𝑗] × 𝐵[𝑗 , 𝑘] × 𝐶 [𝑘, 𝑙]) NLP (Transformers) Attention Model [59]

TCL out[𝑙, 𝑚, 𝑛] = ∑
𝑘, 𝑗,𝑖

(𝐴[𝑖, 𝑗 , 𝑘] × 𝐵[𝑖, 𝑙] × 𝐶 [𝑗 , 𝑚] × 𝐷 [𝑘, 𝑛]) Tensor Contraction Layer [33] AlexNet [34], VGG [50]

L2

Processing Pass 1 Processing Pass 2 Time

KL2 = 1, RL2 = 1, PL2 = 2 L2

PE1 PE2

KL2 = 1, RL2 = 1, PL2 = 2

PE1 PE2
Tile 1 Tile 4 Tile 2 Tile 3

Kspatial = 2Kspatial = 2

Fig. 3: Processing the tiles of Fig. 2b in parallel. 𝐾 dimension
is spatially unrolled, so both PEs need the same ifmap data but
distinct weights and ofmaps.

each pair of tiles processed concurrently by the PEs accesses the
same region of the ifmap, which can be broadcast to both PEs.

Considering all combinations of tiling, traversal order, and
unrolling results in an enormous search space for tensor
computations: for example, Table I shows that the search space
for an Inception V3 layer can be on the order of 1010 possibilities.

D. Loop ordering observations from prior work
Prior works [14, 40] have thoroughly analyzed the potential

loop orderings and identified principles for choosing a subset
that would still lead to optimal reuse. We also use their analysis
to reduce the possible loop orderings in dataflow optimization.
To summarize their observations, we make the 1D convolution
example of the previous section slightly more complex, adding
an extra dimension of C input channels to it. A two-level, tiled
version of this algorithm is shown in Algorithm 3.

Algorithm 3 a 2-level tiled 1D convolution algorithm with
multiple input (𝐶) and output (𝐾) channels

1: for 𝑘2 ← [0, 𝐾𝐿2) do
2: for 𝑝2 ← [0, 𝑃𝐿2) do
3: for 𝑐2 ← [0, 𝐶𝐿2) do
4: for 𝑟2 ← [0, 𝑅𝐿2) do
5: 𝐿1 tile computation

L2 tile

L1 tile

The prior-work observations can be summarized as follows:
Ordering Principle 1. A loop that iterates over a dimension
not used to index a tensor (i.e., non-indexing) can reuse that
tensor [10, 14, 40]. For example, in Algorithm 3, dimensions R
and C are not used to index ofmap. Therefore the two innermost
loops (line 4 and line 3) lead to the reuse of the ofmap tensor.
Ordering Principle 2. For a loop to reuse the tensor it does
not index, it must either be innermost, or the loops inside it
must be limited to the other non-indexing dimensions of that

same tensor [14, 40]. It can be observed from Algorithm 3 that
even though K is a non-indexing dimension of ifmap, in this
loop order ifmap actually cannot be reused across K. This is
because the loop that iterates over C (line 3) is inside the K loop
(line 1) and replaces the ifmap tensor multiple times within each
iteration of the K loop.
Ordering Principle 3. Only a subset of the loops — precisely,
the innermost loops that reuse the same tensor — determine the
reuse, and hence only the ordering of those loops needs to be
optimized [14]. In Algorithm 3, although R and C loops lead to
the reuse of the ofmap tensor, reordering the loops above them
(i.e., line 1 and line 2) does not change the number of accesses
to any of the tensors.

III. Tiling and Unrolling Principles
In this section, we show how to take advantage of properties

that span across memory levels to reduce the search space at
each level significantly. Throughout the discussion, we will use
the same 1D convolution example of Section II-D with C input
channels, K filters, and R and P as the filter and feature map
widths respectively. The observations we make, however, are
generalizable to other tensor workloads, as we will demonstrate
in our evaluations in Section V.

A. Tiling
First, we will show why only a subset of problem dimensions

need to be considered for tiling, thus reducing the optimization
space. We will also explain how these dimensions can be
selected based on the tensor access pattern and upper-level
memory loop order. We rely on algebraic analysis of memory
access equations in a tiled dataflow to do this. For clarity, we
start by considering the L1 tile configuration of a 2-level tiled
dataflow with a specific L2 loop ordering that executes the
running 1D convolution example. This is shown in Algorithm 4.

Algorithm 4 a 2-level tiled 1D convolution dataflow
1: for 𝑝2 ← [0, 𝑃𝐿2) do
2: for 𝑘2 ← [0, 𝐾𝐿2) do
3: for 𝑐2 ← [0, 𝐶𝐿2) do
4: for 𝑝1 ← [0, 𝑃𝐿1) do
5: for 𝑘1 ← [0, 𝐾𝐿1) do
6: for 𝑐1 ← [0, 𝐶𝐿1) do
7: for 𝑟1 ← [0, 𝑅) do
8: computation

L2 tile

L1 tile

Here, the L1 tile sizes are 𝑃𝐿1 × 𝐾𝐿1 for ofmap, 𝐶𝐿1 × 𝐾𝐿1 × 𝑅
for weight, and (𝑃𝐿1 + 𝑅 − 1) ×𝐶𝐿1 for ifmap. Furthermore, the
total number of L1 tile iterations is the product of L2 factors,

𝑃𝐿2 × 𝐾𝐿2 × 𝐶𝐿2. Thus, to execute the full workload, the total
number of L2 memory accesses would be #passes × tile size,
broken down as:

ifmap : 𝐾𝐿2 × 𝑃𝐿2 × 𝐶𝐿2 (𝑃𝐿1 + 𝑅 − 1) × 𝐶𝐿1

= 𝐾𝐿2 × 𝐶 × 𝑃𝐿2 (𝑃𝐿1 + 𝑅 − 1)
(1)

weight : 𝐾𝐿2 × 𝑃𝐿2 × 𝐶𝐿2 (𝐶𝐿1 × 𝐾𝐿1 × 𝑅)
= 𝐶 × 𝐾 × 𝑅︸ ︷︷ ︸

problem dimensions

× 𝑃𝐿2 (2)

ofmap : 𝐾𝐿2 × 𝑃𝐿2 ×���* reused
𝐶𝐿2 (𝑃𝐿1 × 𝐾𝐿1)

= 𝑃 × 𝐾 ×���* reused
𝐶𝐿2 = 𝑃 × 𝐾

(3)

For the specified loop ordering, ofmap is reused 𝐶𝐿2 times —
that is, ofmap remains in L1 between L1 tiles — because 𝐶 is
the innermost L2 loop. The total L2 access count is the sum of
Equations 1 to 3:

L2 accesses = 𝐾𝐿2 × 𝐶 × 𝑃𝐿2 (𝑃𝐿1 + 𝑅 − 1)
+ 𝐶 × 𝐾 × 𝑅 × 𝑃𝐿2 + 𝑃 × 𝐾

(4)

For best L1 reuse, our task is to minimize this under the
constraint that the L1 tiles of all data types fit in the L1 memories.

What are the degrees of freedom here? Equations 1 to 3
involve either full problem dimensions (e.g., 𝐶, 𝐾 and 𝑅 in
Equation 2) — which we cannot change — or loop bounds
(e.g., 𝑃𝐿2 in Equation 2) — which we can select to change
L1 tile dimensions. For example, the ofmap access count 𝑃 ×
𝐾 only includes full problem dimensions (Equation 3), so we
cannot change it by altering L1 tile dimensions. Our options are,
therefore, to decrease 𝐾𝐿2 or 𝑃𝐿2 to minimize ifmap and weight
fetches.

Now, consider two configurations where (a) 𝐾𝐿2 = 2 or
(b) 𝐾𝐿2 = 3, and no other loop bounds change. If both (a)
and (b) fit in the L1 memories, then (a) offers strictly more
reuse (and lower energy) since there are fewer ifmap and weight
fetches.

Note that 𝐾 and 𝑃, the dimensions of interest, are indexing
dimensions for ofmap, the tensor being reused across L1 tiles in
Algorithm 4. In general:

Tiling Principle

For any given tile𝑇 and operand OP that is being reused
across the tiles, if any of the indexing dimensions for
OP can be enlarged in the tile while still fitting in the
respective memory, the larger tile leads to fewer data
accesses to the upper-level memory; therefore 𝑇 can be
pruned.

Appendix A provides a more abstract discussion regarding the
tiling principle.

The tiling principle helps us reduce the potential tiling options
for each of the upper-level orderings when optimizing the
dataflow at a specific memory level (e.g., L1), and yields a set
of ordering-tiling candidates. Applying this observation reduces
the L1 tile search space for ResNet-18 [24] conv layers by up
to 80%.

Algorithm 5 a tiled 1D convolution with a shared L2 memory,
several parallel processing units each with their dedicated L1
memory.

1: for 𝑘2 ← [0, 𝐾𝐿2) do
2: for 𝑝2 ← [0, 𝑃𝐿2) do
3: for 𝑐2 ← [0, 𝐶𝐿2) do
4: for 𝑘spatial ← [0, 𝐾spatial) do
5: for 𝑝spatial ← [0, 𝑃spatial) do
6: for 𝑐spatial ← [0, 𝐶spatial) do
7: for 𝑘1 ← [0, 𝐾𝐿1) do
8: for 𝑝1 ← [0, 𝑃𝐿1) do
9: for 𝑐1 ← [0, 𝐶𝐿1) do

10: for 𝑟 ← [0, 𝑅) do
11: compute

L2 tile

spatial

L1 tile

B. Spatial unrolling
When processing units are arranged in SIMD fashion — such

as the vector MACs of the Simba-like architecture of Fig. 1b
— spatially unrolling the loops can reduce the number of upper
memory accesses by broadcasting the data that all the units
need. We again use algebraic analysis to identify a subset of the
dimensions, which unrolling them increases the spatial reuse.

We continue the running example and consider, as the spatial
level, parallel PEs before the L2 memory; this adds a spatial
unrolling factor in each dimension as shown in Algorithm 5, so
that, for example, 𝑃 = 𝑃𝐿2 × 𝑃spatial × 𝑃𝐿1. We assume we are
looking for unrolling candidates for a specific ordering-tiling
pair from all the pairs found in the previous section. With that,
we analyze the L2 access equations to maximize the spatial
reuse:

ifmap : 𝐾𝐿2 × 𝑃𝐿2 × 𝐶𝐿2 ((𝑃spatial × 𝑃𝐿1 + 𝑅 − 1)
× 𝐶spatial × 𝐶𝐿1) = 𝐾𝐿2 × 𝐶 × 𝑃𝐿2 (𝑃𝐿1 + 𝑅 − 1)

(5)

weight : 𝐾𝐿2 × 𝑃𝐿2 × 𝐶𝐿2 (𝐶spatial × 𝐶𝐿1 × 𝐾spatial

× 𝐾𝐿1 × 𝑅) = 𝐶 × 𝐾 × 𝑅 × 𝑃𝐿2
(6)

ofmap : 𝐾𝐿2 × 𝑃𝐿2 ×���* reused
𝐶𝐿2 (𝑃spatial × 𝑃𝐿1 × 𝐾spatial

× 𝐾𝐿1) = 𝑃 × 𝐾 ×���* reused
𝐶𝐿2 = 𝑃 × 𝐾

(7)

Observe that each equation (i.e., the L2 access count for each
tensor) is affected only by the spatially unrolled dimensions
that index that tensor. For example, 𝑃spatial does not affect the
weight tensor accesses because it is not indexed by 𝑃 and can
be broadcast to all the PEs across which 𝑃 is unrolled.

Since we are considering a L2 loop ordering that lead to
temporal reuse of ofmap across L1 tiles, 𝐶𝐿2 does not affect the
total number of L2 accesses (i.e., the sum of Equations 5 to 7).
Therefore, similar to Section III-A, to reduce the total access
count we must reduce some combination of 𝑃𝐿2 and 𝐾𝐿2.

Since we also assumed the L1 tile configuration is decided,
each candidate tile has 𝑃𝐿1 and 𝐾𝐿1 already determined, so
those cannot change. Instead, we can unroll 𝑃 and 𝐾 spatially
(i.e., maximize 𝑃spatial, 𝐾spatial, or some combination of those)
to reduce 𝑃𝐿2 and 𝐾𝐿2.

Although we cannot make any conclusion about the combina-
tion of the factors that should be unrolled, we still inferred what

dimensions should not be unrolled (e.g., 𝐶 in this example).
Besides algebraic analysis, we know that unrolling in the 𝐶
dimension would spatially reuse ofmap to reduce its access to
L2. In this scenario, however, ofmap was already temporally
reused across L1 tiles, and the number of L2 accesses was
already optimized for this tensor. In the general case, we want to
unroll dimensions that lead to spatially reusing the operand(s)
which is(are) not temporally reused:

Spatial Unrolling Principle

Given a parallel processing level between memories
𝑋 and 𝑋 − 1, assume the operand 𝑂𝑃 is temporally
reused across the tiles due to the loop ordering at 𝑋 .
Moreover, suppose the tiling is optimized to reduce the
number of memory accesses for 𝑂𝑃 to 𝑋 as much as
possible. Then, when unrolling dimensions, we reject
as unrolling candidates the non-indexing dimensions of
𝑂𝑃 which would lead to its spatial reuse. This way, we
can maximize the spatial reuse for other tensors rather
than the already optimized 𝑂𝑃.

Using this principle, we can prune more than 90% of the spatial
unrolling candidates for ResNet-18 [24] convolution layers and
a 14 × 12 PE array, similar to the one used in [10].

C. Multiple spatial and temporal levels
At this point, we can optimize the dataflow for any 2-level

memory system, even when one of them is spatially distributed
among several parallel units. Based on Section II-D, we can
reduce the set of possible orderings. For each loop ordering
choice from the reduced set, we can find a reduced set of tiling
candidates as discussed in Section III-A.

Then, according to Section III-B, we can find the potential
unrollings that lead to high data reuse for each loop ordering-
tiling pair, model the total number of memory accesses for each,
and choose the ordering, tiling, and unrolling with the minimum
number of data accesses. We can also apply this approach level-
by-level when there are more memory and parallel processing
levels. Next, we will introduce two representations that facilitate
the automatic application of our observations in this section to
distinct tensor computations.

IV. Representation and Optimization
Sunstone accepts a description of the tensor workload and

uses it to infer the reuse pattern of that workload. The following
shows an example of this that describes an operation on two
input operands and one output, where the first operand is 2D
and indexed by 𝐶 and some combination of indices 𝑃 and 𝑅

(e.g., 𝑝 + 𝑟), the second is 3D and indexed by 𝐾 , 𝐶, and 𝑅, and
the output is 2D and indexed by 𝐾 and 𝑃 (this corresponds to
the 1D convolution example of Section II-D).
dimensions = {K:4, C:4, P:7, R:3}
tensor_description = {

operand1 = [C, (P, R)],
operand2 = [K, C, R],
output = [K, P]

}

TABLE III: Inferred reuse of each tensor in 1D convolution

tensor indexed by reused by partially reused by

ofmap 𝑘, 𝑝 𝑐, 𝑟

ifmap 𝑐, 𝑝, 𝑟 𝑘 𝑟 , 𝑝

weight 𝑐, 𝑘, 𝑟 𝑝

Here, the indices are bound by 0 ≤ 𝐾,𝐶 < 4, 0 ≤ 𝑃 < 7, and
0 ≤ 𝑅 < 3. From this problem description, Sunstone identifies
indexing dimensions of each tensor involved in the computation.
Based on that and the Ordering Principle 1 discussed in
Section II-D, it also infers what tensor can be reused across
which dimensions in a loop. For example, in 1D convolution,
𝐶, 𝑅, and 𝑃 are indexing dimensions for ifmap, while 𝐾 is a
non-indexing dimension. It follows that the tensor can be fully
reused across any non-indexing dimension.

Finally, in some computations (e.g., convolution), partial
reuse exists due to the sliding window. This means some loops
(here, 𝑅 or 𝑃) can reuse a subset of data for some tensors
(here, ifmap) across the tiles [10]. Sunstone also considers this
when finding the set of optimal orderings. The information that
Sunstone extracts for the 1D convolution example is shown in
Table III.

A. Loop ordering representation

To automatically take advantage of the ordering principles
from Section II-D and find a small set of possible orderings for
a given tensor workload, Sunstone represents the loop ordering
search space by a trie. An example of this is illustrated in Fig. 4
for the 1D convolution example.

Each node represents a partially-determined loop order and is
annotated with the available reuse. At the root, the dimensions
of all four nested loops are undetermined (denoted by x).
The immediate children represent the possible choices for the
innermost loop: e.g., xxxC means𝐶 is traversed in the innermost
loop while the outer loops are undetermined. Their children, in
turn, represent the traversal order of the innermost loop and the
next-innermost loop: e.g., xxRK traverses 𝐾 as the innermost
loop and 𝑅 in the next-innermost, and so on.

Each node is annotated with the operand(s) that can be reused:
in ❶ ofmap (of) is reused when the innermost loop traverses the
input channel (xxxC), in ❷ both ofmap and ifmap are reused
when the innermost loop is the filter dimension 𝑅, and so on.
Note that reuse can remain or disappear at higher levels as
discussed in Section II-D (Ordering Principle 3): for example,
in node ❸, the ofmap reuse across 𝐶 is available because all
innermost loops also reuse ofmap ❷, while the weight reuse
across 𝑃 in ❺ is not available because weight is not reused
across 𝑅 in ❷.

Once the trie has been constructed, some nodes can be pruned
as strictly worse, relying on the two rules below. First, any nodes
that offer no further reuse compared to their parent node can be
pruned since none of their children will offer any further reuse
either (Ordering Principle 3). For example, xxCK ❼ is pruned
away because𝐶 reuses ofmap, but ofmap reuse has already been
destroyed by the inner 𝐾 loop.

xxxx

xxRK
R: if

xxCK xxPK
P: if

xxCR
C: of

xxRC
R: of

xxxK
K: if

xxxR
R: of, R: if

xxxC
C: of

xxxP
P: w,P:if

xxPRxxKR xxRPxxKC xxPC xxCPxxKP

Innermost

outermost

12
4

3 5

6

Kept

Pruned

7 8

Legend

Fig. 4: Representing the order space of the 1D convolution problem as a trie, and how it can be pruned.

1, 1, 1, 1
mem: 3

2, 1, 1, 1

not growing in these
dimensions

mem: 5

1, 2, 1, 1
mem: 5

4, 1, 1, 1
mem: 9

4, 2, 1, 1
mem: 14

2, 7, 1, 1
mem: 23

2, 2, 1, 1
mem: 8

1, 7, 1, 1
mem: 15

K

CR
××

P

K
P K

P
K
P

Legend:

kept pruned by
memoryKL1, PL1, CL1, RL1

pruned by
larger factor

×
11 2

3

Fig. 5: L1 tile search space. The workload is the 1D convolution
where 𝑃 = 14, 𝐾 = 4, 𝐶 = 4, 𝑅 = 3, and L1 size is 8 entries.

Second, if two child nodes either: (i) lead to reusing the same
tensor 𝛼 from the same dimensions A and B (possibly with
different innermost orderings, such as xxAB and xxBA), or
(ii) one node leads to reusing the same tensor 𝛼 as the other
but also reuses another tensor 𝛽, then one of the children can
be pruned. Fig. 4 shows that since xxCR ❸ reuses the same
operands as xxxC ❶ (i.e., ofmap via 𝑅 and 𝐶), but also leads to
additional partial reuse of ifmap via the 𝑅 dimension, the xxxC
node is pruned away ❻.

Once the set of promising orderings is established, tiling and
unrolling candidates must be found based on the Tiling and
Unrolling Principles, for each order in the set and at each
temporal and spatial level, respectively. Next, we will show how
Sunstone does this.

B. Tiling representation
To take advantage of the Tiling and Unrolling Principles,

we again formulate the problem as a search tree. We will explain
our representation with an example that assumes xxCR ordering
— ❸ in Fig. 4 — as the loop ordering in L2 and aim to find
good L1 tiling candidates.

We construct the tree using the smallest L1 tile possible
(where every dimension is 1) as the root. Fig. 5 shows this
for the running example where the total problem dimensions are
𝐾 = 4, 𝑃 = 14, 𝐶 = 4, 𝑅 = 4 and the unified L1 memory has 8
entries.

Each node is an L1 tile candidate, annotated with its L1 tile
dimensions and the L1 memory footprint (we show a unified L1
here for clarity; there would be separate per-datatype footprints
if L1 memories were separated by datatype). Each child node is a
candidate identical to the parent node except for one dimension,
which is enlarged to the next higher factor of the corresponding
problem dimension. Since we were assuming xxCR ordering and
showed in Section III-A that, based on the Tiling Principle, only

indexing dimensions of ofmap (𝑃 and 𝐾) should be enlarged for
this ordering, we only grow the tree in those two dimensions. For
example, node ❶ represents the L1 tile with 𝐾𝐿1 = 2, 𝑃𝐿1 = 1,
𝐶𝐿1 = 1, 𝑅𝐿1 = 1, while its child ❷ is the same except that
𝑃𝐿1 = 2.

Based on the Tiling Principle, nodes with at least one child
still fitting in L1 can be pruned because the child offers strictly
more reuse. For example, ❷ still fits in L1 and has more reuse
than its parent ❶, so ❶ can be pruned. In contrast, node ❷
cannot be enlarged in any dimension without exceeding the L1
capacity. This is therefore a candidate for the optimal L1 tile,
and remains unpruned. Lastly, node ❸ exceeds the L1 capacity
and will not be considered any further.

Note that we can only use this method to draw conclusions
between a node and its descendants (such as ❶ and ❷). Our
pruning rules cannot draw further conclusions about nodes
where different dimensions have been enlarged.

V. Evaluation

A. Methodology

System. We run Sunstone, all the prior tools, and all of our
simulations on a system with an 8-core Intel Xeon CPU running
at 2.1 GHz. Each core is equipped with 32-KB private L1 data
and instruction caches and 1 MB of private L2 cache. The cores
share 16.5 MB of L3 cache and 32 GB of memory.
Implementation. We implemented Sunstone in Python and
added support for multithreading. For Sunstone and all the other
tools that support multithreading, we set the number of threads
to 8. We implemented Sunstone in a bottom-up fashion, where
dataflow is optimized starting from the lowest level of memory
and then level by level all the way up to the off-chip memory.
At each level, the tiling, loop reordering, and unrolling (if
applicable) are optimized as discussed in Section III-C. Finally,
we also implemented a top-down approach which starts the
optimization from the off-chip memory and compared it against
the bottom-up approach in Section V-C.
Evaluation Platform. For fair comparison across tools, we
evaluate each proposed mapping using the hardware-validated
cost model of Timeloop [43]. Timeloop assumes double buffer-
ing can hide the latency of data transmission and estimates
the performance of spatial accelerators as the sum of the
operation/access count for each hardware component multiplied
by its operation/access energy. We simulated the energies using
Accelergy [64], which itself relies on Cacti [41] for SRAM and
Aladdin [47] for other components.

TABLE IV: Evaluated accelerator configurations
Name Simba-like Conventional

Technology 45 nm 45 nm
Weights: 8-bit Weights: 16-bit

Precision Ofmap: 24-bit Ofmap: 16-bit
Ifmap: 8-bit Ifmap: 16-bit

Vector width 8 N/A
MACs per PE 8 × 8 lanes of vector MACs (8-bit) Single MAC (16-bit)

PE grid 4 × 4 32 × 32
Weights: 32 KB

L1 Ofmap: 3 KB Unified: 512 B
Ifmap: 8 KB

L2 Ofmap and Ifmap: 512 KB Unified: 3.1 MB
BW (words/cycle) inter-PE: (Read: 32, Write: 32) intra-PE: (Read:64, Write:64)

intra-PE: (Read: 64, Write: 8) intra-PE: (Read:3, Write:4)
NoC Interleaved multi-cast

inter-PE ofmap communication

TABLE V: Hyperparameters for fast and slow configurations for
Timeloop (TL) and dMazeRunner (dMaze). For TL, TO = time-
out and VC = victory condition. For dMaze, util. = minimum
utilization threshold.

Prior Work Fast/Aggressive Slow/Conservative

Timeloop [43] (TL) TO 20000 80000
VC 25 1500

dMazeRunner [14] (dMaze)

L1 util. 80% 60%
L2 util. 50% 40%
PE util. 80% 80%

spatial reduction not allowed allowed

We also modeled the interconnect similar to that of Ey-
eriss [10]. Specifically, a destination tag with X and Y PE
coordinates is added to every package to be delivered. Moreover,
a tag check hardware at each PE ensures that only the designated
PEs receive the data. We used Accelergy to model the energy
for all these and included it in the total energy cost.
Merits. As is common practice, we use energy-delay prod-
uct (EDP) as the key figure of merit for evaluating the
performance of mappings. We use optimization wall-clock time
to compare the dataflow optimizers’ speed.
Accelerator Architectures. We evaluate the mappings for two
representative architectures: a Simba-like [46] configuration
and an Eyeriss-like conventional configuration similar to [30]
and [10], detailed in Table IV. The Timeloop configuration
files for these architectures were provided by the GitHub
repository [65] of Accelergy [64], as well as that [27] of
CoSA [28].
Benchmarks. We use a broad set of workloads listed in Table II.
Prior art. We compare against Timeloop [43] (TL), dMazeRun-
ner [14] (dMaze), Interstellar [68] (INTER), and CoSA [28],
the current state-of-the-art DNN mappers, using code from
their respective repositories linked in their paper. We provide
each tool with the same access/operation energy modeled with
Accelergy for each hardware component.

For TL and dMaze, we use fast (-fast) and slow (-slow) config-
urations (see Table V); dMaze-fast is the default configuration
from the repository. We use the default configurations for CoSA.
For INTER, we preset the spatial unrolling to CK as prescribed in
the paper [68], but allow unrolling of other dimensions whenever
CK cannot fully utilize the PE grid. As TL can be extremely slow,
we terminate it after one hour for each layer and take the best
mapping found.

(a) normalized EDP

(b) Time-to-solution on non-DNN workloads

Fig. 6: Non-DNN workloads on the conventional accelerator

(a) EDP

(b) Time to solution

Fig. 7: Weight update (batch 16) of Inception v3 layers; invalid
= no mapping meets the minimum utilization constraints, no
mapping can use the preset unrolling, or the returned mapping
does not correspond to the original computation.

B. Comparison to prior works

1) Non-DNN workloads: This section demonstrates Sun-
stone on non-DNN tensor workloads from table II. We evaluate
MTTKRP, TTMc, and SDDMM with ranks 32, 8, and 512,
respectively, on the conventional architectures of Table IV. We
further assume that each PE has a datapath that can entirely
consume every operand and produce one partial output in each
cycle when operating at line rate.

Fig. 6a and 6b show that Sunstone outperforms TL in
both solution EDP and time-to-solution. TL constructs a huge
optimization space and uses no pruning methods to shrink it. As
a result, it cannot search the whole space in a reasonable time.
It may still have suboptimal solutions even after a long time and
searching many configurations, as evident by Fig. 6a.

2) Convolution on a conventional accelerator: Fig. 7 shows
the evaluation results for some of the convolution layers of
Inception V3 network [55]. Overall, Sunstone is much faster

(a) EDP

(b) Time to solution

Fig. 8: Inference (batch 16) of ResNet-18 layers; invalid = some
tiles of the returned dataflow do not fit in their memories.

than the prior art and produces mappings with better or equal
EDP than them.

dMaze returns invalid mappings on several layers. That is
because its minimum utilization conditions do not generalize
well to different workloads (e.g., lighter, early convolution layers
that do not utilize 50% of the L2 memory). Furthermore, unlike
Sunstone, dMaze appears to assume that convolutions are always
symmetric, so we were not able to use it to obtain valid mappings
for asymmetric convolution layers 1 × 7 deep and 3 × 1 deep
(Fig. 7a).

Timeloop, as discussed in Section V-B1, suffers from its huge
optimization space and undirected random search approach. For
example, some of its solutions utilize less than 20% of total L1
buffers capacity. Such solutions could have been excluded from
the space via the Tiling Principle from Section III-A.

Finally, mappings from INTER have poor EDP on several lay-
ers. We found that often this is due to the highly restrictive strat-
egy of only considering input and output channels for unrolling.
While it helps to reduce the optimization space significantly,
it sometimes excludes better mappings. For example, INTER’s
solutions sometimes reuse ofmap both temporally and spatially.
This goes against our Unrolling Principle (Section III-B) that
states for a memory level, if the number of accesses for one of
the tensors is optimized with temporal reuse, the focus of spatial
reuse should be on the other tensors.

3) Convolution on Simba-like accelerator: Fig. 8 shows the
evaluation results for the Simba-like accelerator of Table IV.
Besides Timeloop and CoSA, the other prior tools do not
support optimizing the dataflow for such an architecture. Fig. 8b
shows that CoSA can finish the scheduling faster than Sunstone.
However, this comes at the cost that most of the mappings
returned by it were invalid in our experiments.

Specifically, for the invalid mappings, one or more tiles
did not fit in their designated memories of the accelerator.
This is because CoSA approximates the non-linear dataflow
optimization problem as linear to use linear optimizers such
as [22]. Furthermore, for the layers that CoSA returns a

TABLE VI: Effect of optimization order on optimization size
and dataflow

Inter-level order Intra-level order Space size EDP (×1011)
bottom-up unrolling→ tiling→ ordering 99350 4.8
bottom-up tiling→ unrolling→ ordering 121050 4.8
bottom-up ordering→ tiling→ unrolling 108298 4.8
top-down unrolling→ tiling→ ordering 7391620 4.6

valid mapping, solutions are mostly suboptimal compared to
Sunstone, such as Conv2 with 1.48× worse EDP.

The Timeloop mapper, on the other hand, cannot even be
invoked without providing some constraints on the optimization
space. We used some of the constraints provided by the tool
for this architecture on their GitHub page [42]. This helped
Timeloop to find mappings, although still up to 900× slower
than Sunstone as shown in Fig. 8b.

Furthermore, the provided constraints are manually designed
and empirical-based. Therefore, they do not necessarily lead
to optimal solutions; as shown in Fig. 8a, ResNet-18 achieves
an overall 1.5× worse EDP when scheduled with Timeloop
compared to Sunstone. We found that this is mainly due to the
energy inefficiency of Timeloop mappings, as their latencies
were equal to that of Sunstone.

C. Order of optimization
Next, we study the effect of the order in which dataflow can

be optimized on both EDP and optimization space. While we
described our optimization process in Section III as finding the
best tile candidates for each loop order and then finding the
best unrolling for each order-tile pair, in general these can be
done in any other order. That is, for example, one can find the
best tilings, then the best unrolling candidates for each tile, and
finally try all the loop orders on each tiling-unrolling candidate
to find the best combination or vice versa.

Moreover, since accelerators have multiple levels of memory
and spatial tiling, the optimization can be done by starting at
the lowest level (i.e., the one after the MACs) and going up
level-by-level (bottom-up), or vice versa (top-down).

We examined optimizing ResNet-18 [24] convolution layers
for an Eyeriss-like [10] accelerator in different orders (Table VI).
Within a level, changing the order of unrolling, tiling, and loop
order optimization does not significantly affect performance,
which suggests that pruning techniques do not significantly
depend on the order of optimization.

Across memory levels, the bottom-up approach examines an
order of magnitude less dataflow than top-down approaches.
This is because of two reasons. First, since on-chip memory of
accelerators can hold large factors of problem dimensions, the
optimization space is still large after the first optimization level
of top-down approach. Second, alpha-beta-pruning can prune
many more candidates when optimization is bottom-up, because
the approximated energy after the first-level of optimization is
much closer to the final energy as most of the accesses are to
the lowest memory levels when reuse is high.

D. Overheads
Tiling and unrolling can introduce overheads. First, the

number of instructions can increase as the code becomes

(a) Normalized energy of a naive (left) versus dataflow optimized (right)
execution.

(b) Energy breakdown of executing ResNet-18 on a DianNao-like
accelerator

Fig. 9: Tiling and unrolling overhead analysis

complex. Second, the data might need to be reordered in the
memory according to the target dataflow so that the tiles of
each operand can be read consecutively and in a burst. We
define a processing pass as loading several data tiles into the
on-chip memory, processing them, and storing the result. The
reordering is needed because many accelerators encode the
memory address and size of the operands needed for a processing
pass. Having the tiles required for a processing pass in adjacent
addresses can minimize the number of instructions needed to
load/store them.

To analyze these overheads, we built an in-house simulator
of an accelerator similar to DianNao [9], which describes its
instruction set architecture (ISA). We also built a compiler that
can generate DianNao-like instructions and compiled the layers
of ResNet-18 with it.

We were able to process all the layers using 4.1 million
of 256-bit DianNao-style instructions with our simulator. The
number of instructions for each layer was much less than the
number of operations for that layer, thanks to the SIMD nature
of tensor workloads that DianNao ISA can capture. Specifically,
instructions are needed every time a data transfer from/to off-
chip memory is needed, but on-chip data can be processed
without instructions using FSM controllers. We refer the readers
to [9] for architectural details of DianNao and its ISA.

Our goal is to analyze the benefits of tiling and unrolling.
We compare the energy needed for a dataflow-optimized
execution of ResNet-18 with a naive case where data is streamed
from DRAM. We used a similar method to Section V-A for
modeling the access/operation energy of each component in
the accelerator and used our simulator to get the event counts.

We assumed the instructions are accessed from the expensive
DRAM because the energy can only be improved if a dedicated
memory is used for the instructions. The resulting energies are
shown in Fig. 9a for some representative layers and the total
execution.

The naive approach only spends energy on MACs and
accessing DRAM. However, the inherent reuse in the workload
is not captured. On the other hand, the tiled and unrolled
execution leverages the reuse and swaps many of the DRAM
accesses with cheaper accesses to on-chip buffers for weights
(SB), ifmap (NBin) and ofmap (NBout). Consequently, the
overall execution with tiling and unrolling is 2.9× more energy
efficient, even though the overheads for instructions and data
reordering exist. The overhead for instructions and reordering
is only 5% and 0.2% of the overall execution, respectively.
Finally, Fig. 9b shows the breakdown of energy when ResNet-18
layers are executed on a DianNao-like accelerator.

VI. Related Work
Transforming nested loops to achieve better performance is

backed by decades of research. Seminal works such as [39, 62,
63] introduce the idea and explain how to apply it automatically.
However, deciding among all possible transformations requires
searching a vast space, and our work focuses on significantly
reducing it.

Many prior works have focused on mapping tensor workloads
to 2D accelerators. Timeloop [43] uses a random search with
user-configurable termination criteria; as a result, it’s not
restricted to convolution, but is also far slower than other tools.

dMazeRunner [14], Marvel [7], and ZigZag [40] focus on
DNNs and use directed search, introducing heuristics to prune
the search space and relying on user-specified thresholds like
utilization factors. Interstellar [68] also relies on empirically-
driven heuristics. Sunstone also employs directed search, but
eschews arbitrary knobs and user-specified hyperparameters in
favor of rules based on algebraic analysis.

NN-baton [56] and Simba [46] target the high communication
latency of multi-chip accelerators and propose novel dataflow at
the package level to solve this. Their solutions are orthogonal to
our on-chip optimization techniques and can be combined.

Others [4, 18, 36, 57] use polyhedral compilation techniques.
These either target different platforms (e.g., GPU [18, 57] or
CPU [37]), or are too generalized [4, 36] and suffer from inaccu-
rate cost models which can lead to suboptimal solutions [5, 37].

Finally, another set of prior work tackles the mapping
problem by attempting to approximate mapping in terms of well-
known optimization problems, and using black-box optimizers.
Gamma [32] and Ansor [70] use genetic algorithms. Ansor also
introduces a method to generate a rich optimization space auto-
matically. This can be combined with Sunstone to auto-generate
a space that is both comprehensive and compact. CoSA [28]
uses mixed-integer programming, Mindmappings [25] uses
gradient descent, TVM [8] uses gradient tree boosting, and
ConfuciuX [31] uses reinforcement learning. However, these
approximations often don’t capture parts of the problem and
yield poor solutions (see Section V-B3).

VII. Conclusion

In this paper, we analyzed the reuse equations for executing
tensor algebra on spatial accelerators and highlighted principles
that can reduce the optimization space significantly. We de-
signed and built a fast optimizer based on these, which supports
dataflow optimization for various tensor workloads and modern
accelerator architectures. Finally, we showed that our approach
outperforms prior work by up to 800× in optimization time and
up to 1.9× in EDP.

Acknowledgments

The authors are grateful to the anonymous reviewers for
insightful feedback and helpful suggestions. This material is
based on research sponsored by Air Force Research Laboratory
(AFRL) and Defense Advanced Research Project Agency
(DARPA) under agreement number FA8650-20-2-7007, and
by the Natural Sciences and Engineering Research Council
of Canada (NSERC) under award number NETGP 485577-
15. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of Air Force Re-
search Laboratory (AFRL), Defense Advanced Research Project
Agency (DARPA), the U.S. Government, the Natural Sciences
and Engineering Research Council of Canada (NSERC), or the
Government of Canada.

References

[1] Vahideh Akhlaghi, Amir Yazdanbakhsh, Kambiz Samadi, Rajesh K.
Gupta, and Hadi Esmaeilzadeh. Snapea: Predictive early activation
for reducing computation in deep convolutional neural networks. In
2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), pages 662–673, 2018.

[2] Woody Austin, Grey Ballard, and Tamara G Kolda. Parallel tensor
compression for large-scale scientific data. In 2016 IEEE international
parallel and distributed processing symposium (IPDPS), pages 912–922.
IEEE, 2016.

[3] Eunjin Baek, Dongup Kwon, and Jangwoo Kim. A multi-neural network
acceleration architecture. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pages 940–953, 2020.

[4] Riyadh Baghdadi, Ulysse Beaugnon, Albert Cohen, Tobias Grosser,
Michael Kruse, Chandan Reddy, Sven Verdoolaege, Adam Betts, Alas-
tair F. Donaldson, Jeroen Ketema, Javed Absar, Sven Van Haastregt,
Alexey Kravets, Anton Lokhmotov, Robert David, and Elnar Hajiyev.
Pencil: A platform-neutral compute intermediate language for accelerator
programming. In 2015 International Conference on Parallel Architecture
and Compilation (PACT), pages 138–149, 2015.

[5] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele
Del Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana,
Shoaib Kamil, and Saman Amarasinghe. Tiramisu: A polyhedral
compiler for expressing fast and portable code. In Proceedings of the
2019 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), CGO 2019, page 193–205. IEEE Press, 2019.

[6] Xuan Bi, Annie Qu, and Xiaotong Shen. Multilayer tensor factorization
with applications to recommender systems. Annals of Statistics, 46, 11
2017.

[7] Prasanth Chatarasi, Hyoukjun Kwon, Natesh Raina, Saurabh Malik,
Vaisakh Haridas, Angshuman Parashar, Michael Pellauer, Tushar Krishna,
and Vivek Sarkar. Marvel: A data-centric compiler for dnn operators on
spatial accelerators. arXiv preprint arXiv:2002.07752, 2020.

[8] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze,
et al. {TVM}: An automated {End-to-End} optimizing compiler for deep
learning. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 578–594, 2018.

[9] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji
Chen, and Olivier Temam. Diannao: A small-footprint high-throughput
accelerator for ubiquitous machine-learning. In Proceedings of the 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’14, page 269–284, New
York, NY, USA, 2014. Association for Computing Machinery.

[10] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial archi-
tecture for energy-efficient dataflow for convolutional neural networks.
In 2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), pages 367–379, 2016.

[11] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss:
An energy-efficient reconfigurable accelerator for deep convolutional
neural networks. IEEE Journal of Solid-State Circuits, 52(1):127–138,
2016.

[12] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. Eyeriss v2: A
flexible accelerator for emerging deep neural networks on mobile devices.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
9(2):292–308, 2019.

[13] Andrzej Cichocki, Danilo Mandic, Anh-Huy Phan, Cesar Caiafa, Guoxu
Zhou, Qibin Zhao, and Lieven Lathauwer. Tensor decompositions for
signal processing applications from two-way to multiway component
analysis. Signal Processing Magazine, IEEE, 32, 03 2014.

[14] Shail Dave, Youngbin Kim, Sasikanth Avancha, Kyoungwoo Lee, and
Aviral Shrivastava. Dmazerunner: Executing perfectly nested loops
on dataflow accelerators. ACM Transactions on Embedded Computing
Systems (TECS), 18(5s):1–27, 2019.

[15] Timothy A Davis and Yifan Hu. The university of florida sparse
matrix collection. ACM Transactions on Mathematical Software (TOMS),
38(1):1–25, 2011.

[16] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob
Fergus. Exploiting linear structure within convolutional networks for
efficient evaluation. Advances in neural information processing systems,
27, 2014.

[17] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao
Luo, Xiaobing Feng, Yunji Chen, and Olivier Temam. Shidiannao:
Shifting vision processing closer to the sensor. In Proceedings of the
42nd Annual International Symposium on Computer Architecture (ISCA),
ISCA ’15, page 92–104, New York, NY, USA, 2015. Association for
Computing Machinery.

[18] Venmugil Elango, Norm Rubin, Mahesh Ravishankar, Hariharan San-
danagobalane, and Vinod Grover. Diesel: Dsl for linear algebra and neural
net computations on gpus. In Proceedings of the 2nd ACM SIGPLAN Inter-
national Workshop on Machine Learning and Programming Languages,
MAPL 2018, page 42–51, New York, NY, USA, 2018. Association for
Computing Machinery.

[19] Evgeny Frolov and Ivan V. Oseledets. Tensor methods and recommender
systems. CoRR, abs/1603.06038, 2016.

[20] Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, and Christos
Kozyrakis. Tangram: Optimized coarse-grained dataflow for scalable
nn accelerators. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), ASPLOS ’19, page 807–820, New York,
NY, USA, 2019. Association for Computing Machinery.

[21] Deepak Ghimire, Dayoung Kil, and Seong-heum Kim. A survey
on efficient convolutional neural networks and hardware acceleration.
Electronics, 11(6), 2022.

[22] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022.
[23] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A.

Horowitz, and William J. Dally. Eie: Efficient inference engine on
compressed deep neural network, 2016.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR), pages 770–778, 2016.

[25] Kartik Hegde, Po-An Tsai, Sitao Huang, Vikas Chandra, Angshuman
Parashar, and Christopher W Fletcher. Mind mappings: enabling efficient
algorithm-accelerator mapping space search. In Proceedings of the 26th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 943–958, 2021.

[26] Yunxiang Hu, Yuhao Liu, and Zhuovuan Liu. A survey on convolutional
neural network accelerators: Gpu, fpga and asic. In 2022 14th International
Conference on Computer Research and Development (ICCRD), pages
100–107, 2022.

[27] Qijing Huang, Grace Dinh, and miheer vaidya. Ucb-bar/cosa: A scheduler
for spatial dnn accelerators that generate high-performance schedules in
one shot using mixed integer programming (mip). https://github.com/ucb-
bar/cosa.

[28] Qijing Huang, Aravind Kalaiah, Minwoo Kang, James Demmel, Grace
Dinh, John Wawrzynek, Thomas Norell, and Yakun Sophia Shao. Cosa:
Scheduling by constrained optimization for spatial accelerators. In
2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), pages 554–566. IEEE, 2021.

[29] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding
up convolutional neural networks with low rank expansions. CoRR,
abs/1405.3866, 2014.

[30] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,
Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir
Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann,
C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian
Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan,
Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,
James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan
Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix,
Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps,
Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn,
Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy
Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick
Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and
Doe Hyun Yoon. In-datacenter performance analysis of a tensor processing
unit. In Proceedings of the 44th Annual International Symposium on
Computer Architecture (ISCA), ISCA ’17, page 1–12, New York, NY,
USA, 2017. Association for Computing Machinery.

[31] Sheng-Chun Kao, Geonhwa Jeong, and Tushar Krishna. Confuciux:
Autonomous hardware resource assignment for dnn accelerators using
reinforcement learning. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 622–636. IEEE, 2020.

[32] Sheng-Chun Kao and Tushar Krishna. Gamma: Automating the hw
mapping of dnn models on accelerators via genetic algorithm. In
Proceedings of the 39th International Conference on Computer-Aided
Design (ICCAD), ICCAD ’20, New York, NY, USA, 2020. Association
for Computing Machinery.

[33] Jean Kossaifi, Aran Khanna, Zachary Lipton, Tommaso Furlanello, and
Anima Anandkumar. Tensor contraction layers for parsimonious deep
nets. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPR), pages 26–32, 2017.

[34] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. Advances in neural
information processing systems, 25, 2012.

[35] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and
Victor Lempitsky. Speeding-up convolutional neural networks using fine-
tuned cp-decomposition. arXiv preprint arXiv:1412.6553, 2014.

[36] Christian Lengauer. Polly—performing polyhedral optimizations on a
low-level intermediate representation. Parallel Processing Letters, 22, 12
2012.

[37] Rui Li, Yufan Xu, Aravind Sukumaran-Rajam, Atanas Rountev, and
P. Sadayappan. Analytical characterization and design space exploration
for optimization of CNNs. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). ACM, apr 2021.

[38] Ye Liu and Michael K. Ng. Deep neural network compression by
tucker decomposition with nonlinear response. Knowledge-Based Systems,
241:108171, 2022.

[39] Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Improving data
locality with loop transformations. ACM Trans. Program. Lang. Syst.,
18(4):424–453, jul 1996.

[40] Linyan Mei, Pouya Houshmand, Vikram Jain, Sebastian Giraldo, and
Marian Verhelst. Zigzag: Enlarging joint architecture-mapping design
space exploration for dnn accelerators. IEEE Transactions on Computers,
70(8):1160–1174, 2021.

[41] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi.
Cacti 6.0: A tool to model large caches. HP laboratories, 27:28, 2009.

[42] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin
Chen, Victor A Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek
Khailany, Stephen W Keckler, and Joel Emer. Timeloop: A systematic
approach to dnn accelerator evaluation.

[43] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin
Chen, Victor A Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek
Khailany, Stephen W Keckler, and Joel Emer. Timeloop: A systematic
approach to dnn accelerator evaluation. In 2019 IEEE international
symposium on performance analysis of systems and software (ISPASS),
pages 304–315. IEEE, 2019.

[44] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli,
Rangharajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W.
Keckler, and William J. Dally. Scnn: An accelerator for compressed-
sparse convolutional neural networks, 2017.

[45] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE conference on computer vision
and pattern recognition (CVPR), pages 4510–4520, 2018.

[46] Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian
Zimmer, Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter,
Nathaniel Pinckney, Priyanka Raina, Stephen G. Tell, Yanqing Zhang,
William J. Dally, Joel Emer, C. Thomas Gray, Brucek Khailany, and
Stephen W. Keckler. Simba: Scaling deep-learning inference with multi-
chip-module-based architecture. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
MICRO ’52, page 14–27, New York, NY, USA, 2019. Association for
Computing Machinery.

[47] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks.
Aladdin: A pre-rtl, power-performance accelerator simulator enabling
large design space exploration of customized architectures. In 2014
ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA), pages 97–108. IEEE, 2014.

[48] Nicholas D. Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang,
Evangelos E. Papalexakis, and Christos Faloutsos. Tensor decomposition
for signal processing and machine learning. IEEE Transactions on Signal
Processing, 65(13):3551–3582, 2017.

[49] Nicholas D Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang,
Evangelos E Papalexakis, and Christos Faloutsos. Tensor decomposition
for signal processing and machine learning. IEEE Transactions on Signal
Processing, 65(13):3551–3582, 2017.

[50] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556,
2014.

[51] Age K Smilde, Paul Geladi, and Rasmus Bro. Multi-way analysis:
applications in the chemical sciences. John Wiley & Sons, 2005.

[52] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing
Liu, and George Karypis. FROSTT: The formidable repository of open
sparse tensors and tools, 2017.

[53] Nitish Srivastava, Hanchen Jin, Shaden Smith, Hongbo Rong, David
Albonesi, and Zhiru Zhang. Tensaurus: A versatile accelerator for mixed
sparse-dense tensor computations. In 2020 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pages 689–702,
2020.

[54] Jian-Tao Sun, Hua-Jun Zeng, Huan Liu, Yuchang Lu, and Zheng Chen.
Cubesvd: a novel approach to personalized web search. In Proceedings of
the 14th international conference on World Wide Web (WWW ’05), pages
382–390, 2005.

[55] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition (CVPR), pages 2818–2826, 2016.

[56] Zhanhong Tan, Hongyu Cai, Runpei Dong, and Kaisheng Ma. Nn-
baton: Dnn workload orchestration and chiplet granularity exploration
for multichip accelerators. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), pages 1013–1026, 2021.

[57] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya
Goyal, Zachary DeVito, William S. Moses, Sven Verdoolaege, Andrew
Adams, and Albert Cohen. Tensor comprehensions: Framework-agnostic
high-performance machine learning abstractions, 2018.

[58] M Alex O Vasilescu and Demetri Terzopoulos. Multilinear analysis of
image ensembles: Tensorfaces. In European conference on computer
vision (ECCV), pages 447–460. Springer, 2002.

[59] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems, 30,
2017.

[60] Rangharajan Venkatesan, Yakun Sophia Shao, Miaorong Wang, Jason
Clemons, Steve Dai, Matthew Fojtik, Ben Keller, Alicia Klinefelter,
Nathaniel Pinckney, Priyanka Raina, Yanqing Zhang, Brian Zimmer,
William J. Dally, Joel Emer, Stephen W. Keckler, and Brucek Khailany.
Magnet: A modular accelerator generator for neural networks. In
2019 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 1–8, 2019.

[61] Sasindu Wijeratne, Rajgopal Kannan, and Viktor K. Prasanna. Recon-
figurable low-latency memory system for sparse matricized tensor times
khatri-rao product on FPGA. CoRR, abs/2109.08874, 2021.

[62] Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm.
In Proceedings of the ACM SIGPLAN 1991 Conference on Programming
Language Design and Implementation (PLDI), PLDI ’91, page 30–44,
New York, NY, USA, 1991. Association for Computing Machinery.

[63] M. Wolfe. More iteration space tiling. In Proceedings of the 1989
ACM/IEEE Conference on Supercomputing, Supercomputing ’89, page
655–664, New York, NY, USA, 1989. Association for Computing
Machinery.

[64] Yannan Nellie Wu, Joel S Emer, and Vivienne Sze. Accelergy: An
architecture-level energy estimation methodology for accelerator designs.
In 2019 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 1–8. IEEE, 2019.

[65] Yannan (Nellie) Wu, Angshuman Parashar, Joel Emer, and Po-An Tsai.
Accelergy-project/timeloop-accelergy-exercises: Exercises for exploring
the fibertree, timeloop and accelergy tools. https://github.com/Accelergy-
Project/timeloop-accelergy-exercises.

[66] Qingcheng Xiao, Size Zheng, Bingzhe Wu, Pengcheng Xu, Xuehai Qian,
and Yun Liang. Hasco: Towards agile hardware and software co-design
for tensor computation, 2021.

[67] Dingqing Yang, Amin Ghasemazar, Xiaowei Ren, Maximilian Golub,
Guy Lemieux, and Mieszko Lis. Procrustes: a dataflow and accelerator
for sparse deep neural network training, 2020.

[68] Xuan Yang, Mingyu Gao, Qiaoyi Liu, Jeff Setter, Jing Pu, Ankita Nayak,
Steven Bell, Kaidi Cao, Heonjae Ha, Priyanka Raina, et al. Interstellar:
Using halide’s scheduling language to analyze dnn accelerators. In
Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
pages 369–383, 2020.

[69] Kaiqi Zhang, Xiyuan Zhang, and Zheng Zhang. Tucker tensor decomposi-
tion on fpga. In 2019 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 1–8, 2019.

[70] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu,
Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen,
Joseph E. Gonzalez, and Ion Stoica. Ansor: Generating high-performance
tensor programs for deep learning. In Proceedings of the 14th USENIX
Conference on Operating Systems Design and Implementation, OSDI’20,
USA, 2020. USENIX Association.

Appendix
This appendix provides an abstract reuse analysis for tiling

a tensor workload on a two-level memory hierarchy, extending
the tiling principle discussion in Section III-A.

Assume a tensor algebra problem P(OP1,OP2), with two
tensor operands OP1 and OP2, and n dimensions represented
with the set D = {d1, . . . , d𝑛}. Further, assume that A ⊂ D,
represented as A = {𝑑1, . . . , 𝑑𝑥}, is the set of non-indexing
dimensions for OP1. There will also be a B ⊂ D, the
set of indexing dimensions for operand OP1, represented as
B = {d𝑥+1, . . . , d𝑛}. We represent the sets of indexing and non-
indexing dimensions for OP2 as A′ and B′, respectively.

First, we consider the case that A = B′ and B = A′. In other
words, the indexing dimensions for OP1 are the non-indexing
dimensions for OP2 and vice-versa. Let [d𝑦] represent the value
of dimension d𝑦 . Next, consider the following two-level tiling
algorithm for P:

1: for 𝑖𝑛 ← [0, [𝑑𝑛] 𝐿2) do
2: . . .

3: for 𝑖𝑥 ← [0, [𝑑𝑥] 𝐿2) do
4: . . .

5: for 𝑖1 ← [0, [𝑑1] 𝐿2) do
6: for 𝑗𝑛 ← [0, [𝑑𝑛] 𝐿1) do
7: . . .

8: for 𝑗1 ← [0, [𝑑1] 𝐿1) do
9: computation

L2 tile

L1 tile

Here, [d𝑦]𝐿2 represents the L2-tile factor for the dimension d𝑦 .
From this, we can observe that OP1 is being reused by the loops
over [d1]𝐿2 to [dx]𝐿2 and derive the number of L2 accesses OP
for each operand as follows:

OP1 =

𝑛∏
𝑖=𝑥+1
[𝑑𝑖]𝐿2 ×

𝑛∏
𝑖=𝑥+1
[𝑑𝑖]𝐿1 =

𝑛∏
𝑖=𝑥+1
[𝑑𝑖] (8)

OP2 =

𝑛∏
𝑖=1
[𝑑𝑖]𝐿2 ×

𝑥∏
𝑖=1
[𝑑𝑖]𝐿1 =

𝑛∏
𝑖=𝑥+1
[𝑑𝑖]𝐿2 ×

𝑥∏
𝑖=1
[𝑑𝑖] (9)

Observe that OP1+OP2 consists of the product of full problem
dimensions, which we cannot change, and

∏𝑛
𝑖=𝑥+1 [di]𝐿2, the

product of L2-tile factors for the indexing dimensions of
the reused operand OP1. Therefore, to minimize the total
sum, we should decrease the L2-tile factors for the indexing
dimensions of 𝑂𝑃1. Since [𝑑𝑖] = [𝑑𝑖]𝐿2 × [𝑑𝑖]𝐿1, increasing
these dimensions in the L1-tile will do the job.

Next, we consider the case where 𝐵 ∩ 𝐵′ ≠ ∅. In other
words, OP1 and OP2 will have one or more common indexing
dimensions. In this case, if 𝐵′ = {𝑑1, . . . , 𝑑𝑥}, not all the loops
from 𝐵′ can reuse OP1 even if they are consecutive innermost
loops. However, as long as 𝐴−𝐴′ ≠ ∅, there will still be a 𝑥′ such
that 𝐴− 𝐴′ = {𝑑1, . . . , 𝑑𝑥′ } ⊂ 𝐷 and the loops from this set can
reuse OP1 when they are consecutively innermost. Therefore, we
make the same analysis as the previous case and aim to decrease
the L2-tile factors for the dimensions in {𝑑𝑥′+1, . . . , 𝑑𝑛}.

