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Abstract—Recent work has argued that sequential consis-
tency (SC) in GPUs can perform on par with weak memory
models, provided ordering stalls are made less frequent by
relaxing ordering for private and read-only data. In this
paper, we address the complementary problem of reducing
stall latencies for both read-only and read-write data.

We find that SC stalls are particularly problematic for work-
loads with inter-workgroup sharing, and occur primarily due
to earlier stores in the same thread; a substantial part of the
overhead comes from the need to stall until write permissions
are obtained (to ensure write atomicity). To address this, we
propose RCC, a GPU coherence protocol which grants write
permissions without stalling but can still be used to implement
SC. RCC uses logical timestamps to determine a global memory
order and L1 read permissions; even though each core may see
a different logical “time,” SC ordering can still be maintained.

Unlike previous GPU SC proposals, our design does not
require invasive core changes and additional per-core storage
to classify read-only/private data. For workloads with inter-
workgroup sharing overall performance is 29% better and
energy is 25% less than in best previous GPU SC proposals,
and within 7% of the best non-SC design.

I. Introduction

Modern processors and GPUs can support multiple inflight
memory requests not only from different cores but also from
independent instructions in the same thread. This can result
in memory operations appearing to execute out of order: two
cores — or even two instructions in the same thread — could
potentially observe memory writes in different order, leading
to difficult-to-debug synchronization bugs. To constrain the
range of allowable behaviour, processors and programming
languages define memory models, which specify precisely
which writes a memory read may observe.

Sequential consistency (SC) — the most intuitive model
— requires that (a) all memory accesses appear to execute
in program order and (b) all threads observe writes in the
same sequence [1]. To ensure in-order load/store execution,
a thread must delay issuing some memory operations until
preceding writes complete; we refer to these delays as SC
stalls. Moreover, since all cores must observe writes in the
same order, stores cannot complete until they are guaranteed
to be visible to all other threads and cores. Because of these
restrictions, few modern commercial CPUs have supported
SC [2]; typically SC is relaxed to permit limited [3, 4] or
near-arbitrary reordering [5–8]; programmers must then insert
memory fences for specific memory operations, in essence
manually reintroducing SC stalls. GPUs manufacturers have
followed suit: both NVidia and AMD GPUs exhibit weak
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Figure 1. SC stalls are (a) infrequent, but (b) mostly due to preceding
stores; (c) average store latencies are much longer than load latencies; (d)
zero invalidate latency leads to substantial speedup for inter-workgroup
sharing workloads.

consistency [9] similar to WO [10] or RC [11] models.
Correctly inserting fences is difficult, however, especially

in GPUs where all practical programs are concurrent and
performance-sensitive. The authors of [9] found missing
fences in a variety of peer-reviewed publications, and even
vendor guides [12]. Such bugs are very difficult to detect:
some occurred in as few as 4 out of 100,000 executions
in real hardware, and most occurred in fewer than 1% of
executions [9]. Code fenced properly for a specific GPU
may not even work correctly on other GPUs from the same
vendor: some of these bugs were observable in Fermi and
Kepler but not in older or newer microarchitectures [9].
SC hardware is desirable, then, if it can be implemented

without significant performance loss. Recent work [13, 14]
has argued that this is possible in GPUs: unlike CPUs,
which lack enough instruction-level parallelism (ILP) to
cover the additional latency of SC stalls, GPUs can leverage
abundant thread-level parallelism (TLP) to cover most SC
stalls. The authors of [14] propose reducing the frequency
of the remaining SC stalls by relaxing SC for read-only and
private data; classifying these at runtime, however, requires
complex changes to GPU core microarchitecture and carries
an area overhead in devices where silicon is already at
a premium. Moreover, both studies focused on SC built
using CPU coherence protocols (MOESI and MESI) with
write-back L1 caches. In GPUs, however, write-through L1s
perform better [15]: GPU L1 caches have very little space per
thread, so a write-back policy brings infrequently written data
into the L1 only to write it back soon afterwards. Commercial
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GPUs have write-through L1s and require bypassing/flushing
L1 caches to ensure intra-GPU coherence [16–18].1 Compared
to the best GPU relaxed consistency design, the performance
cost of implementing SC appears to be closer to 30% [15].

To trace the roots of this performance loss, we evaluated
an SC implementation similar to prior work [13, 14] but
with GPU-style write-through L1 caches (see Sec. IV-A for
simulation setup). We examined memory-intensive workloads
with and without inter-workgroup sharing previously used
to evaluate GPU cache coherence [15]; the inter-workgroup
benchmarks rely on inter-core coherence traffic, while the
intra-workgroup benchmarks communicate only within each
GPU core. We found SC stalls to be relatively infrequent
(Fig 1a): in only one case were more than 20% memory
operations ever stalled because of SC; this supports prior
arguments [13] that the massive parallelism available in GPUs
can cover most ordering stalls introduced by SC.

We next examined the cause of each stall — i.e., the type
of the preceding memory operation from the same thread.
Fig. 1b shows that most SC stall cycles are spent waiting for
a previous store (or atomic) instruction to complete; indeed,
in most cases, nearly all stall delays are due to waiting for
prior writes. This is because average store latencies are very
long: for workloads with inter-threadblock communication,
store latencies are often much longer than load latencies
(2.4× gmean), and up to 3.7× longer (Fig. 1c).

This makes sense: to maintain SC, each store must receive
an ack before completing to ensure that the new value
has become visible to all cores. There are two parts to
this latency: one — the round-trip to L2 — is unavoidable
with the write-through L1 caches found in GPUs. The other
part is ensuring exclusive coherence permissions: in our
MESI-based experiment the write waits until other sharers
have invalidated their copies, while in timestamp-based GPU
coherence protocols like TC-strong [15] the store waits
for all read leases to expire. Long-latency stores can affect
performance not only by delaying SC stall resolution, but
also by occupying buffer space or stalling same-cacheline
stores from other threads in MSHRs until the ack is received.
To find out whether coherence delays are significant, we

implemented an idealized variant of SC where acquiring
read and write permissions is instant (SC-ideal). Fig. 1d
shows the speedup of SC-ideal over realistic SC: for
workloads with inter-workgroup sharing, idealizing coherence
yields a substantial performance improvement (1.6× gmean);
workloads with only intra-workgroup sharing see no benefit.

To address this, we leverage Lamport’s observation that
ordering constraints need to be maintained only in logical
time [20], prior observations that SC can be maintained log-

1GPU vendor literature and some prior work use “coherence” to describe
automatic page-granularity data transfer between the host CPU and the
GPU’s shared L2; some academic proposals use “system coherence” for the
same concept [19]. To the best of our knowledge, no existing GPU product
implements hardware-level intra-GPU coherence.

core 0
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core 3
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Figure 2. Enforcing SC in logical time. Logical time increases left to right;
all cores that observe the new value of A must advance their logical times
past that of the store.

ically [21, 22], and the recent insight that logical timestamps
can be used directly to implement a coherence protocol [23].
We propose Relativistic Cache Coherence (RCC), a simple,
two-state GPU coherence protocol where each core maintains
— and independently advances — its own logical time. The
L2 keeps track of the last logical write time for each cache
block; whenever a core accesses the L2, it must ensure that
its own logical time exceeds the last write time of the relevant
block. Data may be cached in L1s for a limited (logical) time,
after which the block self-invalidates.

Fig. 2 shows how RCC maintains SC in logical time. First,
core 0 loads address A, and receives a fixed-time lease for
A from the L2, which records the lease duration; core 0
may then read its L1 copy until its logical time exceeds the
lease expiration time. Core 1 writes to A, but to do this it
must advance its own logical time to past the lease given out
for A; this step (dashed line) is equivalent to establishing
write permissions in other protocols, but occurs instantly in
RCC. Core 2 loads A from L2 and advances its logical time
past the time of core 1’s write. Finally, core 3 also reads
A. The load is logically before the store to A (because core
3’s logical clock is earlier than A’s), but physically the write
to A has already happened, and only the new value of A is
available at the L2. Core 3 thus receives the new value of A,
but must also advance its logical time to that of A’s write.
Naturally, the cost of synchronization does not entirely

disappear: advancing a core’s logical time may cause other
L1 cache blocks to expire. In essence, we are exchanging
a reduction in store latency for A for potentially some
additional L1 misses on other addresses. While this would be
problematic for latency-sensitive CPUs, throughput-focused
GPUs were explicitly designed to amortize this kind of cost;
we will show that in GPUs this tradeoff is worth making.

Lamport’s logical time has recently been proposed as
a coherence mechanism for CPUs [23, 24]. Performance,
however, was subpar even compared to the much simpler
MSI protocol, even though the proposed protocol was more
complex than RCC and relied on a complex speculation-and-
rollback mechanism. RCC is not only much simpler, but
actually outperforms the best existing GPU protocols.

In the rest of this paper, we describe RCC and demonstrate
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how it addresses the store latency and SC stall problems
identified above. In contrast with prior GPU SC work [14],
RCC does not explicitly classify read-only/private data:
instead, a predictor naturally learns to assign short cache
lifetimes to frequently written shared data. Unlike prior GPU
coherence work [15], RCC operates in logical time; as a
result, stores acquire write permissions instantly but still
maintain SC. RCC underpins a sequentially coherent GPU
memory system that outperforms all previous proposals and
closes the gap between SC and weak consistency in GPUs.

The contributions of our work are:
• we trace the cost of SC overheads in realistic GPUs to
the need to acquire write permissions for shared data;

• we propose RCC, a simple two-state GPU coherence
protocol that significantly improves store performance;

• we demonstrate that an SC implementation using RCC
significantly reduces SC stall rates and resolve latencies,
and outperforms the best prior GPU proposal by 29%;

• we close the performance gap between best SC and
weak consistency proposals for GPUs to within 7%.

II. Background

A. Consistency and coherence
Consistency. A memory consistency model defines which
sequences of values may be legally returned from the
sequence of load operations in each program thread. For
example, the following code snippet from [25] represents
a common synchronization pattern found in many inter-
workgroup sharing workloads (e.g., work queues in dlb):

core C0 core C1

data = new
done = true while (!done) {

weakly ordered models } // wait for new data value
need a memory fence here . . . use new data. . .

The question is, should core C1 be allowed to see done=true
even if data=old? This is clearly not the intended behaviour,
since C1 could see a stale copy of data; nevertheless, it is
allowed by many commercial CPUs and all extant GPUs [9].
Sequential Consistency [1] most closely corresponds to

most programmers’ intuition: it requires that (a) memory
operations appear to execute and complete in program order,
and (b) all threads observe stores in the same global sequence.
In SC, an execution where done=true when data=old is
illegal because either (a) the writes to data and done were
executed out of order by core C0, or (b) they were executed
in one order by C0 but observed in a different order by C1.
Weak consistency models, on the other hand, allow near-

unrestricted reordering of loads and stores in the program,
provided that data dependencies are respected; such reorder-
ing typically occurs during compilation and during execution
in the processor. Special memory fence instructions must be
used to restrict reordering and restore sequentially consistent

behaviour: in the example above, a fence is needed to ensure
that the store to data completes before the store to done. As
discussed in Sec. I, missing fences can be very difficult to find
in a massively multithreaded setting like a GPU; conversely,
adding too many fences compromises performance.
Since compilers can reorder or elide memory references

(e.g., via register allocation), a programming language must
also define a memory model. Due to the range of consistency
models present in extant CPUs, languages like Java [26] or
C++ [27] guarantee sequentially consistent semantics only for
programs that are data-race-free (i.e., properly synchronized
and fenced); this is known as DRF-0 [28]. The HRF model
recently proposed for hybrid CPU/GPU architectures further
constrains DRF-0 by requiring proper scoping [29].

Coherence. In systems with private caches, a cache
coherence protocol ensures that writes to a single location are
ordered and become visible in the same order to all cores [30];
the aim is to make caches logically transparent. Since caches
are ubiquitous, providing coherence is a fundamental part of
implementing any memory consistency model.
Not all coherence protocols can support SC. The best

prior GPU coherence protocol TC-weak [15] allows stores to
proceed without exclusive write permissions (unless properly
fenced); while this yields a 30% performance improvement, it
compromises write atomicity, which is necessary for SC [31].
RCC performs close to TC-weak without giving up SC.

B. GPUs vs. CPUs: a consistency and coherence perspective
Consistency. Modern multicore CPUs have largely settled
on weak memory models to enable reordering in-flight
memory operations [3–7]: because CPUs support at most a
few hardware threads, the memory-level parallelism (MLP)
obtained from reordering memory operations is key to
performance. GPUs, on the other hand, buffer many tens of
warps (e.g., 48–64 [16–18]) of 32–64 threads in each GPU
core (SM), and when one warp is stalled (because of an L1
cache miss, for example), the core simply executes another.
With fine-grained multithreading, GPUs can amortize

hundreds of cycles of latency without reordering memory
operations; recent work [13, 14] has suggested that the same
mechanism can cover the ordering stalls required by SC.
Indeed, hardware techniques that reorder accesses — such
as store buffers — are either too expensive or ineffective in
GPUs, so leaving them out does not hurt performance [14].

Coherence. CPU caches are generally kept coherent by
tracking each block’s sharers and invalidating all copies
before writing the block. Most protocols in commercial
products are quite similar: they have slightly different states
(MESI, MESIF, MOESI, etc.) or sharer tracking methods, but
the basic operation relies on request-reply communication
between cores and an ordering point such as a directory.
All commercial GPUs we are aware of lack automatic

coherence among private L1 caches: in GPU vendor literature,
“coherence” refers only to the boundary between the host CPU
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MESI TCS TCW RCC

SC support? yes yes no yes

stall-free
store per-
missions?

no
(invalidate
sharers)

no (wait
until lease
expires)

yes (but
stall for
fences)

yes

Table I
SC and coherence protocol proposals for GPUs

and the GPU. NVidia Pascal allows the GPU to initiate page
faults and synchronize GPU and CPU memory spaces [32],
but intra-GPU coherence requires bypassing the L1 caches [9].
AMD Kaveri APUs bypass and flush the L1 cache for
intra-GPU coherence, and bypass the L2 for CPU-GPU
sharing [33]. Details for ARM MALI GPUs are scant, but it
appears that the coherence boundary terminates at the GPU
shared L2 cache and does not include the L1s [34].

Efficient intra-GPU coherence implementations are subject
to different constraints than CPUs. GPUs have 15, 32, or even
56 SM cores [16–18, 32], simultaneously executing around
100,000 threads. While some prior studies [13, 14] (and our
motivation study in Sec. I) have assumed CPU-like MESI
coherence, a realistic implementation could face simultaneous
coherence requests from tens of thousands of threads; just
the buffering requirements would be prohibitive [15].
The only other coherence protocol proposed for GPUs

leveraged two observations: (a) that write-through caches
provide a natural ordering point at the L2, and (b) that inter-
core synchronization can be implicit via a shared on-chip
clock [15]. A cache that requests read permissions receives
a read-only copy with a limited-time lease; this copy may
be read until the shared clock has ticked past the lease time.
Two protocols are proposed: TC-strong (TCS) can support
SC if the core does not reorder accesses, but stalls stores at
the L2 to ensure that all leases for the address have expired;
TC-weak (TCW) allows stores to proceed without stalling,
but compromises write atomicity and cannot support SC.

In the next section, we describe Relativistic Cache Coher-
ence, a new GPU coherence protocol that supports SC (like
TCS) but allows stores to execute without waiting for write
permissions (like TCW). Table I compares RCC with prior
protocols proposed for GPUs in the context of SC.

III. Relativistic Cache Coherence
Relativistic Cache Coherence leverages the observation by
Lamport [20] that consistency need only be maintained in
logical time. Two threads may see the memory as it was at
two different logical times, as long as each only observes
all writes logically before — and never sees any writes
logically after — its own logical “now.” In RCC, cores
maintain separate logical times, which become synchronized
only when read-write data is shared.
Like all library coherence protocols [15, 23, 24, 35, 36],

RCC allows L1 caches to keep private copies of data only for
limited-time “leases” granted for each requested block; when

a lease expires, the block self-invalidates in L1 without the
need for any coherence traffic. Writes to a block must ensure
that no valid copies are present in any L1s by ensuring that
the write time exceeds the expiration time of all outstanding
leases. In RCC, leases are granted and maintained in logical
time, so writes can complete instantly by advancing the
writing core’s logical clock.

A. Logical clocks, versions, and leases
In relativistic coherence, each core maintains, and indepen-
dently advances, its own logical clock (now). Similarly, each
shared cache (L2) block maintains it own logical version
(ver), equal to the logical time of the last write to this block.

Since the L2 grants per-block read leases to private L1
caches, it keeps track of when the last lease for a given block
will expire (exp). Each L1 cache also keeps track of the exp
it was given by the L2. Different L1s may have different
exps for the same block, but none will exceed the latest exp
in L2. Because L1s are write-through, they do not need to
record ver for each block.
A unique, global SC ordering of memory accesses is

maintained in logical time by applying three rules:
1) Core C reading cache block B must advance its logical

time now to match B’s current version ver if B.ver >
C.now. This ensures that C cannot use B to compute
new data values with logical times < B.ver, i.e., that C
does not observe a value of B “from the future.”

2) Core C writing cache block B must advance B’s ver to
C’s now if B.ver < C.now, and advance its own now to
B’s ver if B.ver > C.now. This ensures the new value
of B cannot be used for computation in cores whose
now is earlier, i.e., that B is not “sent back in time.”

3) Core C writing cache block B must advance its now
as well as the new B.ver beyond the expiration time
exp of the last outstanding lease for B. This ensures
that the new value of B does not “leak:” i.e., that any
values computed from the new value of B by other cores
cannot coexist in their L1s with the old value of B.

The logical now times of memory operations provide a
sequentially consistent ordering. Provided the core scheduler
is modified to ensure that only one global memory access
per warp is issued at any given time, RCC supports SC.2

B. Example walkthrough
Fig. 3 shows how RCC operates on a sequence of instructions
from two different cores. Initially, C0’s cache has neither
A and B (since now > exp) and core C1 has both. In the
shared L2 cache, B has since been written by a third core
and has ver = 30; because C1’s now has not advanced past
10, however, it may still read its cached copy of B.

2The proof that RCC supports SC is essentially the same as for Tardis [37],
we refer the interested reader there. The main difference is that RCC permits
a sequence of unobserved stores to share the same logical version; the SC
ordering in that case is provided by the physical arrival times at the L2.
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Figure 3. RCC executing accesses to two addresses (A and B) from two cores (C0 and C1). The table (left) tracks each core’s logical time (now), and each
cache block’s version (ver) and read lease expiration (exp) after each instruction has executed; the rows represent the order of instructions as executed in
physical time. The diagram (right) illustrates the lease durations in each cache (top) and how the logical time now advances in each core as the corresponding
operations from the table execute (bottom); logical time flows left to right while physical time flows top to bottom. Bold values denote changes since the
last step; crossed-out leases have expired.

First, core C0 writes A, which updates the A.ver in the L2
(rule 2); C1 still has now = 0 and can read its old copy of A.
C0 then reads B, which receives a new lease (until logical
time 40) but must advance its now past B.ver (rule 1).
Next, C1 writes B, which updates B.ver and C1.now to

41, past the last outstanding lease for B (rule 3). This step
enforces SC ordering between the two cores: C1 next reads
A, and is forced to pick up the value written by C0.

Finally, C0 writes B, advancing its now past the
previous write to B (rule 2), and then A, advancing past
the last lease for A (rule 3). Because C1.now is earlier,
however, C1’s next load will happen logically before C0’s
write to A, and will not observe the new value. Note
that SC has been maintained, as the overall behaviour
is explained by the following sequential interleaving:
C0: ST A, LD B; C1: ST B, LD A, LD A; C0: ST B, ST A.

C. Coherence protocol: states and transitions

The full state transition diagram for RCC, including both
stable and transient states, is shown in Fig. 4.

Stable states. RCC has two stable states: V (valid) and
I (invalid). Blocks loaded into the L1 transition to the V
state, and may be read until they are evicted, written, or until
their leases expire, at which point they self-invalidate and
transition to the I state. Stores (and atomic read-modify-write
operations) may occur in both V and I states; the request is
forwarded to the L2 (GPU L1s are write-through, write-no-
allocate), and the block eventually transitions to I after the
store ack is received. Expired blocks in V state (exp< now)
are treated exactly the same way as blocks in I state for
memory operations and cache replacement purposes.
The L2 also only has V and I states. L2 misses retrieve

the value from memory and transition to V. Because the L2
is write-back (like in commercial GPUs ), the V state allows
reads, writes, and atomic operations; a block transitions to I
only when evicted by the L2 cache replacement algorithm.

Transient states. L1 blocks also have three transient states:

L1 FSM

L2 FSM

IV

IIVI

IV LD

ST/AT
ST/AT

evict/expire

ST/AT

LD reply

LD reply

ST/AT
reply

LD
ST
AT

expire
LD reply

ST/AT reply

LD

LD

LD
ST
AT

IV

IAV

IV

AT

LD/ST

DRAMreply

DRAM
reply

LD
ST
AT

evict

LD
/ST

LD = load
ST = store
AT = atomic

stable
state

transient
state

Figure 4. Full L1 and L2 coherence FSMs (stable and transient states).

IV, II, and VI; the first two are required for correctness, while
the third is a GPU-specific optimization.
IV indicates that a load request missed in the L1 and a gets

request has been sent; further load requests for the same
cache block will be stored in the MSHR without more
gets requests, and the block will transition to V once
the data response has been received. Stores received
while in IV state cause a transition to II.

II indicates that a store (or atomic) request has been sent
to the L2, and the cache is waiting for an ack message
with the logical time at which the write was executed
(i.e., the new ver); this is necessary to maintain SC.
While in II state, any data response from the L2 will
be forwarded to the core, but the block will stay in II.

VI is an optimization of the II state when the block was
valid before the write; in VI, the block can still be read
by other warps until the ack message with the new
ver is received from the L2 cache; this is important in
GPUs because round-trip access latencies to L2 can be
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hundreds of cycles [38].
To permit non-blocking misses, the L2 coherence controller
has two transient states:
IV buffers new gets and write requests in the relevant

MSHR, keeping track of the maximum now times from
the reading and writing processors. Once the data arrives
from DRAM, the block’s version is updated to reflect
any writes in the MSHR and a new lease is generated
to satisfy any readers.

IAV indicates an atomic operation received in an invalid
state; this stalls any further L1 requests until the block
has been retrieved from DRAM, its version has been
established, and the atomic operation has completed.

Fig. 5 shows the complete state transition table, including
the generated messages and MSHR management details.

RCC has fewer states and transitions than prior art. Earlier
logical timestamp coherence work [23] requires three stable
states each for L1 and L2 (transient states are not described),
as well as MESI-like recall and downgrade mechanisms
to implement a private writeable state; such inter-core
communication is precisely the source of the SC store
latencies we wish to avoid. Prior GPU coherence work also
has more states (13 total) and transitions than RCC. In the SC-
capable variant, a private state is used to avoid store stalls for
private data; in the weakly ordered version, non-fenced stores
do not stall but SC support is not possible. RCC employs
logical timestamps to acquire store permissions instantly, and
does not require private or exclusive states.

D. L2 evictions and timestamp rollover

Table II lists all timestamps maintained in RCC and their
semantics. Core logical clock now, data write version ver,
and lease expiration time exp were described in Sec III-A.

L2 evictions. Because data copies in L1 automatically
expire, RCC allows caches to be non-inclusive without
requiring the usual recall messages, as in prior GPU
coherence work [15]. Care must be taken, however, to
maintain logical ordering when evicting blocks from L2:
if a block were naïvely evicted and then re-fetched without
preserving its ver and exp, it could then be read logically
before it was written, or could be written before all leases
expire. Singh et al [15] handle this by using an MSHR entry
to store the evicted block until the timestamp expires, which
limits the number of MSHR entries available for L2 misses.

name granularity semantics

now GPU core logical time seen by this core
exp cache block lease expiration time
ver cache block data version (last write time)
mnow mem. partition max(exp,ver) evicted to DRAM
lastrd L2 MSHR latest now of any reading core
lastwr L2 MSHR latest now of any writing core

Table II
Timestamps used in RCC

RCC instead allows the eviction but ensures that, if the
block is reloaded from DRAM, reading or writing it will
cause any outstanding leases for it to expire. To enforce
this, we could keep track of ver and exp for each block in
DRAM, but this would require additional storage provisions
in main memory. Instead, we store the maximum ver or exp
of any evicted block as the “memory time” mnow, one in
each memory partition. To maintain logical ordering, a block
loaded from DRAM will have its ver and exp set to mnow:
any cores that read or write this block will have to advance
their logical time to prevent the issue described above.

Since the L2 is write-back (like in extant GPUs [16–18]),
a write request that misses in L2 will be stored in MSHR
while the block is set to IV state and retrieved from DRAM,
and any additional write requests are merged into the MSHR.
To maintain correct logical write ordering, each MSHR keeps
track of lastwr, the highest write time (originating core now
value) of any write requests received in IV state. Write
requests with now ≥ lastwr update the MSHR data and lastwr;
write requests with now< lastwr do not change lastwr but
must be tracked until the final write time is known. The
larger of lastwr and mnow will become the block’s ver; since
this is the logical write time, the store can be acknowledged
without waiting for the DRAM response. The store data will
remain in the MSHR until the DRAM response arrives.
A similar case arises for read requests that miss in L2.

MSHRs keep track of lastrd, the latest now of any reading
cores; this is used to calculate the lease expiration (exp) once
the block is available, and can be elided to save space (lastwr
would be used instead).

Timestamp rollover. Because timestamps have finite
exact representations and keep increasing, they are subject
to arithmetic rollover. In our experiments, 32-bit logical
timestamps advanced on average once for every 1073 core
clock cycles; this corresponds to approximately one rollover
per hour at clock speeds found in high-performance GPUs.
In principle, this can be handled simply by setting core

now clocks to 0, flushing all L1s, setting all L2 ver and exp
entries to 0, and setting all mnow values to 0; SRAMs that
support flash-clearing [39] make this easy. However, rollover
must be processed atomically in the presence of in-flight
messages, transient cache states, and independent L2 banks.
To implement this correctly, we observe that the L2 is the
only coherence actor that actually increases timestamps (L1s
only copy timestamps received from L2); therefore, the L2
will be the first component to know that rollover is required.

When an L2 partition needs to roll over a timestamp, it
first ensures that all other L2 partitions have stalled and
set their timestamps to 0. This can be done in many ways,
perhaps using a narrow unidirectional ring with the rollover
L2 partition sending a stall flit and all other cores stalling
before allowing the flit to continue; when stall returns to
the originating core, all cores will have stalled (in case of
concurrent stall requests, lowest L2 partition ID wins). All
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L1 
state 

requests from processor core L1 events L2 responses 

load store atomic evict expiry DATA RENEW ACK 

I GETS  
{now = L1.now, 
 exp = D.exp} 
à IV 

WRITE  
{now = L1.now} 
à II 

ATOMIC  
{now = L1.now} 
à II 

 —  —  — — — 

V cache 
hit 

WRITE 
 {now = L1.now} 
à VI 

ATOMIC 
{now = L1.now} 
à VI 

à I à I  — —  — 

IV add to 
MSHR 

WRITE 
 {now = L1.now} 
à II 

ATOMIC 
{now = L1.now} 
à II 

stall  — L1.now = max(L1.now, M.ver) 
D.exp = M.exp 
à V 

D.exp =  
    M.exp 
à V 

 — 

II GETS 
{now = L1.now, 
 exp = D.exp} 

WRITE 
{now = L1.now} 

ATOMIC  
{now = L1.now} 

stall  — L1.now = max(L1.now, M.ver) 
read resp? D.exp = M.exp 
MSHR.empty? à V,  else à VI 
atomic resp? 
MSHR.empty? à I, else à II 

D.exp =  
    M.exp 
à VI 

L1.now = 
max(L1.now, M.ver) 
 
MSHR.empty? à I 

VI cache 
hit 

WRITE  
{now = L1.now} 

ATOMIC 
{now = L1.now} 

stall à II L1.now = max(L1.now, M.ver) 
read resp? D.exp = M.exp 
MSHR.empty? à V, else à VI 
atomic resp? 
MSHR.empty? à I, else à II 

— L1.now = 
max(L1.now, M.ver) 
 
MSHR.empty? à I 
else à II 

L2 
state 

requests from L1 L2 events memory responses 

GETS WRITE ATOMIC evict DATA 

I DRAM FETCH 
MSHR.lastrd = M.now 
à IV 

DRAM FETCH 
MSHR.lastwr = M.now 
à IV 

DRAM FETCH 
MSHR.lastwr = M.now 
à IAV 

 — — 

V D.exp = 
  max(D.exp, D.ver+lease, 
          M.now+lease) 
M.exp > D.ver? 
  RENEW {exp=D.exp} 
else 
  DATA {exp = D.exp,  
             ver = D.ver} 

D.ver = 
   max(M.now, D.ver, 

          D.exp+1) 
ACK {ver = D.ver} 

D.ver = 
  max(M.now, D.ver,  
          D.exp+1) 
DATA  {exp = D.exp, 
            ver = D.ver} 

mnow = 
  max(mnow, 
          D.exp, 
          D.ver) 
dirty? 
WBACK 
à I 

— 

IV add to MSHR 
MSHR.lastrd = 
  max(MSHR.lastrd, 
          M.now) 

write to MSHR 
MSHR.lastwr = 
max(MSHR.lastwr,  
        M.now) 
ACK 
{ver = max(MSHR.lastwr, 
                  mnow)} 

stall stall D.exp = D.ver = mnow 
MSHR.haswrite? 
  D.ver = max(MSHR.lastwr, mnow) 
MSHR.hasread? 
  D.exp = max(D.ver+lease,  

MSHR.lastrd+lease) 
  DATA {exp = D.exp, ver = D.ver} 
à V 

IAV stall stall stall stall D.exp = mnow,  
D.ver = max(MSHR.lastwr, mnow) 
DATA {exp=D.ver, ver = D.ver} à V 

Figure 5. L1 (left) and L2 (right) state transition tables for RCC. D is the cache block (e.g., D.exp is the expiration time for the block), M represents a
received message (e.g., M.ver in an ACK indicates the time when a write will become visible). Arrows signify state transitions. V and I are stable states;
IV, VI, II (L1 only) and IAV (L2 only) are transient states. Braces denote coherence message contents; cache block data are included as appropriate. Shaded
areas highlight protocol changes required for lease extensions.
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Figure 6. Left: fraction of loads that find data in V state but expired
(either for coherence reasons or prematurely); expiration rate is negligible
for intra-workgroup benchmarks. Right: Fraction of expired loads whose
blocks that have not changed in L2 (and can be renewed).

stalling partitions must set all of their timestamps (including
lastwr and lastrd) to 0; queued requests and MSHR entries
are retained, with all timestamps reset to 0. The rollover
partition then sends a flush request to all L1s, and waits for
responses from all; once these have been received, a resume
flit is sent on the inter-partition ring, and all L2 partitions
resume processing requests. An L1 that receives a flush
request sets its now to 0 and invalidates all entries before
replying to L2; addresses with MSHR entries enter the II
state, while the remaining addresses transition to I.

E. Lease times, extension, and prediction

When the L2 receives a gets request, it generates a read lease
for the block and sends the logical expiration time exp back to
the requesting L1. So far, we have assumed all leases have the
same duration (of 10 in Sec. III-B); intuitively, however, read-
only data should receive very long leases to avoid expiration,
whereas data shared frequently should receive short leases
to avoid advancing the logical time too much when they are
written (and thus causing other cache blocks to expire).

When a lease is too short, a load request finds the L1 block
in V state but with an expired lease (now > exp). Fig. 6 (left)
shows how many L1 cache blocks are in V state but expired
when accessed. Sometimes, this is the coherence protocol
working as intended and indicates a transitive logically-before
relation; at other times, the expiration reflects imperfect lease
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Figure 7. Left: interconnect traffic with (+R) and without (–R) the renew
mechanism. Right: reduction in reads that find expired data in L1, with (+P)
and without (–P) the lease predictor mechanism.

assignment. Fig. 6 (right) shows that most such expirations
are premature (i.e., the block’s L2 entry has not changed).

Lease extension. Every such block generates a gets
request and a data response from the L2. While the gets is
small, a data response includes the full cache block, which
poses an unnecessary traffic overhead.

Since the L2 knows when the block was last written (ver),
it could potentially renew the lease by sending the new lease
expiration time but no data (which the L1 already has). Before
deciding whether to send renew or the full data, the L2
needs to know whether the L1’s previous lease is older than
ver; if it is, the L1 may have incorrect data. To provide this
information, we modify gets requests to carry the exp time
of the expired lease (tracked by the L1): if this is newer than
the data version ver in the L2, a renew grant can be sent.
The required protocol changes are shaded in Figure 5; note
that the complexity cost is minimal, with no additional states
and only two new transitions. Prior work [23] also features a
lease extension mechanism, but the renew mechanism there
relies on keeping track of data versions ver in the L1 caches.
Fig. 7 (left) shows that the renewal mechanism is ef-

fective in reducing interconnect traffic for inter-workgroup
sharing workloads by 15% (traffic is also reduced for the
intra-workgroup benchmarks, but their expiration rates are
negligible to begin with).

Lease prediction. Although lease extension reduces inter-
connect traffic, many expirations would not occur to begin
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GPU cores 16 streaming multiprocessors (SMs)
core config 1.4GHz, 48 warps × 32 threads, 32 lanes
warp sched. loose round-robin
register file 32,768 registers (32-bit)
scratchpad 48 KB

per-core L1 32 KB, 4-way set-associative, 128-byte lines,
128 MSHRs

total L2 1024MB = 8 partitions × 128 KB
L2 partition 128 KB, 8-way set-associative, 128-byte lines,

128 MSHRs; 340-cycle minimum latency [38]
interconnect one xbar/direction, one 32-bit flit/cycle/dir.

@ 700MHz (175GB/s/dir.);
8-flit VCs (5 for MESI, 2 otherwise)

DRAM 1400MHz, GDDR, 8 bytes/cycle (175GB/s
peak), 460-cycle minimum latency, FR-FCFS
queues, tCL=12, tRP=12, tRC=40, tRAS=28,
tCCD=2, tWL=4, tRCD=12, tRRD=6, tCDLR=5,
tWR=12, tCCDL=3, tWR=2

lease times 32 bits, predicted from 8–16– · · · –1024–2048

Table III
Simulated GPU and memory hierarchy

inter-threadblock communication

BFS breadth-first-
search

graph traversal [40]

BH Barnes-Hut n-body simulation kernel [41]
CL RopaDemo cloth physics kernel [42]
DLB dynamic load

balancing
workstealing algorithm for octree par-
titioning [43]

STN stencil finite difference solver synchronized
using fast barriers [44]

VPR place & route FPGA synthesis tool [45]

intra-threadblock communication

HSP hotspot 2D thermal simulation kernel [46]
KMN k-means iterative clustering algorithm [46]
LPS Laplace solver 3D Laplace Solver [40]
NDL Needleman-

Wunsch
DNA sequence alignment [46]

SR anisotropic
diffusion

speckle reduction for ultrasound im-
ages [46]

LUD matrix LU matrix LU decomposition [46]

Table IV
Benchmarks used for evaluation.

with if each block received an optimal lease. We attempted to
sweep a range of fixed leases, but found that the performance
spread among them was negligible. This is because RCC
operates in logical time and most operations advance time
in lease-sized amounts; therefore choosing a single fixed
lease merely changes the rate at which logical clocks run
for everyone. Optimally choosing leases, however, is a non-
trivial problem for read-write shared data partly because
the “correct” lease depends on the precise scheduling and
interleaving of threads; while the correct lease is obvious for
read-only data (= ∞), detecting read-only data at runtime
requires microarchitectural changes [14].
Instead, we observe that GPU applications tend to work
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Figure 8. Top: stalls caused by SC, normalized to MESI; bottom: SC stall
latency reduction normalized to MESI. L1s are write-through.

in synchronized phases, with most data being read at the
beginning of a phase and written at the end. These (and
read-only) data should receive fairly long leases, while data
that is shared often (e.g., locks) should receive short leases.

To find the best lease, the L2 initially predicts the maximum
lease (2048) for every block. When the block is written, the
prediction drops to the minimum (8), and grows (2×) every
time a read lease is successfully renewed. This way the L2
quickly learns to predict short leases for frequently shared
read-write blocks (such as those containing locks), but long
leases for data that is mostly read and blocks that miss
in the L2 (e.g., streaming reads). A similar per-block lease
prediction mechanism has been proposed [24] for logical-time
CPU coherence protocols; unlike our predictor, however, short
leases are preferred, and the consistency model is relaxed (to
TSO) to maintain performance. Fig. 7 (right) shows that the
predictor reduces expired reads by 31% for inter-workgroup
workloads (again, intra-workgroup benchmarks benefit but
start with negligible expiration rates).

Potential livelock. Because RCC allows cores to read
cached data without advancing their logical clocks, a spinlock
that only reads a synchronization variable may livelock unless
other warps advance the logical time. This optimization is
common in multicore CPUs with invalidate-based coherence,
but relies on implicit store-to-load synchronization that is
not guaranteed by coherence or consistency requirements.
To the best of our knowledge, these kinds of spinlocks are
not used in GPUs, as most workloads have enough available
parallelism to cover synchronization delays; spinning merely
prevents other (potentially more productive) warps from
executing (in general, synchronization in GPUs requires
different optimizations than in CPUs [44]). Nevertheless, this
potential livelock can be avoided by periodically incrementing
the logical time now (say, by 1 every 10,000 cycles).

F. RCC-WO: a weakly ordered variant

Relative load and store ordering is effected through the per-
core logical time now. Keeping track of two separate logical
now times — the read view, consulted and updated by load
operations, and the write view, consulted and updated by store
operations — allows loads and stores to be reordered with
respect to each other. In this scheme, full fence operations
require only that the read view and write view now values
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be set to whichever is larger; performance can potentially
improve because stores no longer expire cache data that do
not have the same block address. The consistency model is
WO [10]; work concurrent with ours [24] proposes a similar
adaptation that supports RCsc [11].

IV. Results and discussion

A. Simulation setup
We follow the methodology used in previous GPU coherence
work [14, 15]. GPGPUsim 3.x [40] is used to simulate
the core, and combined with the Ruby memory hierarchy
simulator from gem5 [47] to execute coherence transactions.
For the sequentially consistent implementations (MESI, TCS,
RCC), we altered the shader core model to execute global
memory instructions sequentially, and stall local memory
operations if there are outstanding global accesses; this
matches the “naïve SC” baseline of [14]. We use Garnet [48]
to simulate the NoC and ORION 2.0 [49] to estimate
interconnect energy.
The simulated configuration is similar to NVIDIA’s

GTX480 (Fermi [16]), with latencies derived from mi-
crobenchmark studies [38]; this matches the configurations
used in prior work [14, 15]. Table III describes the details.

B. Benchmarks
We use benchmarks identified and classified into inter- and
intra-threadblock communication categories in prior work
on GPU coherence [15]. The intra-threadblock benchmarks
execute correctly without coherence, but are used to quantify
the impact of always-on cache coherence on traditional GPU
workloads. For non-SC simulations, the inter-threadblock
communication benchmarks rely on fences; for SC simula-
tions fences act as no-ops in hardware, but were left in the
sources to prevent the compiler from reordering operations.

Benchmark details and sources are listed in Table IV. Most
were used in prior work on GPU coherence [15]; we dropped
two because our sensitivity studies found them to be highly
nondeterministic and unpredictably sensitive to small changes
in architectural parameters (e.g., a few cycles’ change in L2
latency). We added missing fences to dlb following [9], and
altered tile dimensions in hsp to match GPU cache block
sizes and avoid severe false sharing problems.

C. Results
RCC significantly reduces SC overheads compared to prior
SC implementations for GPUs. Fig. 8 (top) shows issue
stall rates caused by enforcing SC: either direct SC memory
ordering stalls or LSU pipeline stalls caused by waiting on
store acknowledgements. RCC reduces these by 52% relative
to MESI (largely because there are no invalidate delays)
and by 25% relative to TCS (largely because stores in RCC
acquire write permissions without stalling). Fig. 8 (bottom)
shows that SC ordering stalls in RCC are resolved 35% faster

than in MESI and 11% faster relative to TCS. Both of these
metrics directly correlate to performance (see below).

TCW performs better than RCC for bfs because it benefits
both from its weak memory model and from relaxing write
atomicity. All threads share a “mask” vector, which identifies
nodes to be visited in the next iteration (next level of the
bfs tree); TCW allows different cores to modify parts of
this vector without other cores observing the result, while
RCC strictly enforces SC on cache block granularity and
sees more L1 misses (73% vs. 52%).
Conversely, RCC outperforms TCW on DLB. In DLB, a

per-threadblock work scheduler that completes its task steals
tasks from a random other threadblock’s scheduler. Since
work could be stolen at any time, all per-threadblock queue
accesses must be protected with fences; fences stall in TCW
until a physical time when all stores have become globally
visible. In actuality, however, work stealing events are rare,
so most of these stalls are unnecessary. RCC allows cores
to progress independently in their own epochs until actual
sharing occurs. In addition, stores do not stall even when
sharing does occur because SC is enforced in logical time.

SC on top of RCC performs substantially better than
prior SC proposals for GPUs. Fig. 9a shows that RCC is 76%
faster than MESI and 29% faster than TCS on workloads
with inter-workgroup sharing; in fact, performance is within
7% of TCW, the best prior non-SC proposal. On benchmarks
with intra-workgroup communication patterns, RCC is 10%
better than MESI and within 3% of both TCS and TCW.

Interconnect energy is 45% lower than MESI, 25% lower
than TCS, and only 7% below TCW on inter-workgroup
workloads (Fig. 9b); on intra-workgroup programs, it is 25%
better than MESI and on par with TCS/TCW. This is partly
due to reductions in traffic (Fig. 9c) and partly due to RCC
needing only two virtual networks to maintain deadlock-free
operations vs. five for MESI. Interconnect energy expenditure
is becoming more important as GPU core counts grow.

RCC closes the strong–weak ordering gap to 7%. We
also developed RCC-WO, a weakly ordered variant of RCC
(Sec. III-F) and compared it with both TCW (our implemen-
tation supports WO) and the default SC implementation of
RCC. RCC-WO performs neck-to-neck with TCW, and both
perform 7% better than RCC-SC.

One RCC implementation can support strong and
weak consistency. The microarchitectural differences be-
tween weak and strong variants of RCC in GPUs consist of
one additional scheduler signal per warp to order memops
from one thread, and a small change in how stores update
L2 metadata. This opens the possibility that the hardware
memory model in GPUs could be chosen at boot time (as
in, e.g., SPARCv9 [50]) or even at runtime.

RCC has fewer states than TCW, TCS, and especially
MESI (Table V). This is important because coherence is
notoriously difficult to verify: usually, validation involves very
simplified formal models and extensive simulations [51, 52],
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(a)

(b)

(c)

Figure 9. Performance normalized to a MESI baseline with write-through L1s: (a) speedup, (b) interconnect energy broken down by component, and
(c) interconnect traffic broken down by message type. Left: workloads with inter-workgroup sharing; right: intra-workgroup sharing.
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Figure 10. Speedup of weak ordering implementations vs. RCC-SC on inter-workgroup (left) and intra-workgroup (right) workloads.

but bugs survive despite extensive validation efforts [53–56].
RCC has reasonable silicon area overheads. For every

L1 block, RCC only stores exp, and, for every L2 block,
exp and ver. GPU cache blocks are 128 bytes, with perhaps
3-byte tags; with 32-bit timestamps this is 3% overhead for
L1 and 6% area overhead for L2.

V. Related work

GPU memory consistency. Hechtman and Sorin first made
the case that the performance impact of SC is likely small
in GPUs [13]. Singh et al [14] observed that, while this was
true for most workloads, some suffered severe penalties with
SC because of read-only and private data; they proposed to

MESI TCS TCW RCC

L1 states 16 (5+11) 5 (2+3) 5 (2+3) 5 (2+3)
L1 transitions 81 27 42 33
L2 states 15 (4+11) 8 (4+4) 8 (4+4) 4 (2+2)
L2 transitions 50 23 34 14

Table V
RCC has fewer states (stable+transient) and transitions than other

comparable protocols.

classify these accesses at runtime and permit reordering while
maintaining SC for read-write shared data. Our approach
is orthogonal: we focus on SC stall latency, and improve
performance for both read-write and read-only data. Both [13]
and [14] used a CPU-like setup with MESI and write-back
L1 caches. In GPUs, however, write-through L1s perform
better [15]: GPU L1 caches have very little space per thread,
so a write-back policy brings infrequently written data into
the L1 only to write it back soon afterwards. Commercial
GPUs have write-through L1s [16–18]. Our work studies
GPU-style write-through L1 caches, and compares against
the best prior GPU implementation of weak consistency [15].
Sinclair et al [57] adapted DeNovo [58] to GPUs with DRF-0
and HRF variants, and argued that the benefits of HRF over
DRF-0 do not warrant the additional complexity; DeNovo,
however, requires software to expose additional details to the
coherence hardware, while our proposal requires no software
changes. Others have proposed RC for system coherence in
CPU-GPU APU systems [13, 59].

Strong vs. weak consistency in CPUs. Many quills
have been sacrificed to argue that sequential consistency
is desirable in CPUs and propose how it could be efficiently
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implemented [21, 22, 60–69]. Generally, speculation support
or other hardware modifications are required to overcome
the overheads of SC. Lin et al [21] and Gope et al [22] also
used logical order to enforce SC in a CPU setting. We share
the conviction that sequential consistency is preferred, but
focus on GPUs, which have different architectural constraints
(e.g., no speculation support).

GPU coherence. Singh et al [15] proposed a GPU
coherence protocol based on physical timestamps, and showed
that MESI and write-back caches suffered NoC traffic and
performance penalties in GPUs. While the consistency model
is weak throughout, the base version (TCS) can support SC
if the core does not permit multiple outstanding memory
operations from one warp; we use this SC variant as
a baseline. The improved version (TCW) cannot support
SC, but adds offers 30% better performance; we use this
for comparison. RCC uses logical rather than physical
timestamps, has lower complexity, and closes the SC-to-weak
gap between TCS and TCW.

Library cache coherence. Nandy and Narayan [70] first
observed that timestamps can reduce interconnect traffic
due to invalidate messages in MSI-like protocols, but their
protocol did not support SC. Shim et al [35] proposed LCC, a
sequentially consistent library protocol, for multicores; LCC
is equivalent to our TCS baseline. Singh et al [15] adapted
LCC to GPUs and proposed a higher-performance weakly
ordered variant with a novel fence completion mechanism;
Kumar et al [36] used TCW for FPGA accelerators. Recently,
Yao et al [71] adapted TCW to multicores by tracking writes
with a Bloom filter. All of these protocols use physical
timestamps, and SC variants must stall stores (and weak
variants must stall fences) until completion; RCC uses logical
time and stalls neither stores nor fences.

Lamport [20] first observed that consistency need only be
maintained in logical time. This fact has been used to im-
plement coherence on a logically ordered bus (e.g., [72, 73])
and to extend snooping coherence protocols to non-bus
interconnects [74, 75]. Meixner and Sorin used logical
timestamps to dynamically verify consistency models [31].
Yu et al [23] proposed using logical timestamps to directly
implement coherence in CPU-style multicores, but maintains
exclusive write states and recall/downgrade messages that
we wish to avoid to reduce store latencies. At the same time,
architectural features not present on GPUs (e.g., speculative
execution) are required to support a timestamp speculation
scheme. Work concurrent with ours [24] proposes non-SC
variants. RCC shares the notion of keeping coherence with
logical timestamps, but eschews exclusive states to focus on
reducing store latencies. RCC is a simpler protocol that offers
best-in-class performance in GPUs.

VI. Conclusion
In this paper we track the source of SC inefficiency in GPUs
to long store latencies caused by coherence traffic; these

severely exacerbate SC ordering and structural bottlenecks
that GPUs could otherwise easily amortize. We address these
by proposing RCC, a coherence protocol that uses logical
timestamps to reduce store latency. When used as part of
an SC implementation, RCC reduces SC-related stalls by
25%, and stall resolve latency by 11%, compared to the best
coherence proposal for GPUs capable of supporting SC; as
a result, performance is 29% better.

When used in RC mode, RCC matches the best prior RC
proposal; because the hardware needed for RCC is similar
for SC and RC, a single implementation can potentially allow
runtime selection of the desired memory consistency model.
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