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Abstract—GPUs transactional memory (TM) proposals to
date have relied on lazy, value-based conflict detection, assum-
ing that GPUs can amortize the latency by executing other
warps. In practice, however, concurrency must be throttled
to a few warps per core to avoid high abort rates, and TM
performance has remained far below that of fine-grained locks.

We trace this to the latency cost of validating transactions:
two round trips across the crossbar required for most commits
and aborts. With limited concurrency, the warp scheduler
cannot amortize this, and leaves the core idle most of the time.

In this paper, we show that value-based validation does
not scale to high thread counts, and eager conflict detection
becomes more efficient as the number of threads grows. We
leverage this insight to propose GETM, a GPU TM with eager
conflict detection. GETM relies on a novel distributed logical
clock scheme to implement eager conflict detection without the
need for cache coherence or signature broadcasts.

GETM is up to 2.1 times faster than the state-of-the art
prior work WarpTM (gmean 1.2 times), with 3.6 times lower
silicon area overheads and 2.2 times lower power overheads.

I. Introduction
While GPUs have traditionally focused on streaming appli-
cations with regular parallelism, irregular GPU applications
with fine-grained synchronization are becoming increasingly
important. Graph transformation [1, 2], dynamic program-
ming [3], parallel data structures [4], and distributed hashta-
bles [5] have all been accelerated on GPUs using fine-grained
locks. Fine-grained parallel algorithms have recently become
a hardware optimization focus for commercial GPUs [6].

Unfortunately, high-performance parallel applications with
fine-grained locks are challenging to program and debug.
Indeed, reasoning about thread-based synchronized programs
is difficult in general [7, 8], and even simple formal analyses
that account for inter-thread synchronization are NP-hard [9]
or undecidable [10]. In practice, the problem is exacerbated in
accelerators like GPUs, because optimizing for performance
is paramount — after all, if it weren’t, the code would be
running on a CPU. In GPUs, this problem is even worse, as
the combination of lockstep warp execution and stack-based
branch reconvergence can result in unexpected deadlocks in
code that would be deadlock-free in CPUs [11].
Transactional memory (TM) [12, 13] offers an attractive

solution. In contrast to the imperative style and global depen-
dencies induced by locks, transactions enable a declarative
programming style: the programmer specifies that a given
code block constitutes an atomic transaction and leaves
execution details to the runtime (see Fig. 1). Typically,

if (src > dst) { // acquire in-order to avoid deadlock
outer = src; inner = dst;

} else {
inner = src; outer = dst;

}
done = false;
while (!done) { // loop on flag to avoid SIMT deadlock

if (atomicCAS(&locks[outer], 0, 1) == 0) {
if (atomicCAS(&locks[inner], 0, 1) == 0) {

accounts[src] -= amount;
accounts[dst] += amount;
locks[inner] = 0; // release
locks[outer] = 0; // both locks
done = true;

} else { // acquired outer but not inner lock
locks[outer] = 0; // release outer lock

}
}

}

txbegin
accounts[src] -= amount;
accounts[dst] += amount;

txcommit

Figure 1. CUDA ATM benchmark fragment using either locks or TM.

the runtime (hardware or software) attempts to execute
transactions optimistically, only aborting and retrying them
when conflicts are detected; writes performed by aborted
transactions are not visible to transactions that commit
successfully. Because they maintain atomicity and isolation,
transactions are composable [14], and substantially simplify
code in complex codebases [15, 16], leading to many times
lower error rates [17]. Recently, hardware-level transactional
memory has appeared in production CPUs from major
vendors [18–21], as well as in designs and proposals from
other significant industry players [22, 23].
Early proposals for hardware-level transactional memory

for GPUs solved key problems of interacting with the SIMT
stack [24] and coalescing transactions at warp level [25]. Both
rely on value-based validation, which requires one core↔
LLC round trip to validate each transaction and another
round-trip to finalize the commit. Combined with the massive
concurrency present in GPU workloads, these long latencies
create bottlenecks in the commit phase: even if transactional
concurrency is restricted, 700 or more transactions may be
queued in the commit phase on average [24].
Prior proposals have therefore limited transactional con-

currency to very few warps per SIMT core [24, 25]. With
few warps, however, the GPU can no longer effectively
amortize commit latencies, so some performance is lost.
Another proposal has been to proactively abort transactions
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by broadcasting conflict sets from the LLC back to the SIMT
cores [26]; the bandwidth and latency of these broadcasts,
however, limit this approach to extremely long transactions.

In this paper, we instead propose to directly reduce commit
costs by detecting conflicts eagerly. If conflict detection
is performed separately for each memory access — a
latency well within a GPU’s capacity to amortize even with
concurrency throttling — a transaction that arrives at the
commit point is guaranteed to commit successfully. Because
there is no need for time-consuming value-based conflict
detection at commit time, the commit itself can be taken off
the critical path while the warp continues execution.

Specifically, we make the following contributions:
• we trace the inefficiency of prior GPU TM proposals
to long, unamortized commit latencies;

• we show that the number of concurrent transactions in
GPUs favours eager conflict detection;

• we propose a novel GPU TM system with eager conflict
detection and lazy version management;

• we describe an efficient data structure that precisely
tracks metadata for open transactions of unlimited size
while approximately summarizing past commits.

To the best of our knowledge, this is the first full GPU
hardware TM proposal with eager conflict detection, and the
first to leave transaction commits out of the critical path.

II. Background
In this section we briefly sketch the design space of hardware
transactional memory (HTM), describe the best-performing
prior GPU proposal WarpTM [25], and identify the bottleneck
mechanisms we replace in GETM.

A. The Transactional Memory design space
HTMs can be categorized along two axes: conflict de-
tection and versioning. In eager conflict detection (e.g.,
LogTM [27, 28]), an inconsistent read or update attempt
by a transaction is detected when the access is made, and
one of the conflicting transactions is aborted. Lazy conflict
detection (e.g., TCC [29]) defers this until later: often, the
entire transaction log is validated during the commit process,
and conflicts are discovered only then. In principle, the
lazy technique can make better conflict resolution decisions
because the entire transaction is known, but has longer
commit/abort latencies because the entire transaction must
be verified atomically. Typically, eager conflict detection
leverages an existing CPU coherence protocol.
Version management can also be eager or lazy. Lazily-

versioned TMs (e.g., TCC [29]) add transactional accesses
to a redo log, which is only written to memory when the
transaction has been validated and commits; if the transaction
aborts, the redo log is discarded. In eager versioning (e.g.,
LogTM [27, 28]), the transaction writes the new value directly
to the memory hierarchy, but keeps the old value in an undo
log; if a transaction aborts, the undo log is written to memory.
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Figure 2. Messages required for transactional memory accesses and commits
in WarpTM (top) and GETM (bottom).

B. GPU Transactional Memory
The state-of-the-art GPU TM, WarpTM [24, 25], combines
lazy version management with lazy, value-based conflict
detection.1 Fig. 2 (top) shows the access and commit timing.
Firstly, WarpTM modifies the SIMT stacks to allow

aborting and restarting transactions at thread granularity.
GPUs execute many (32–64) threads in lockstep as a single
warp; transactions are a thread-level abstraction, however, so
it is possible that some of the threads in the warp commit
while other threads abort. WarpTM adds special Transaction
and Retry stack entry types that track which threads aborted
and should run again when the transaction is restarted.
As transactions execute, their memory accesses are sent

to a redo log, stored in the SIMT core’s local memory.2 For
each address, loads record the value that was observed (for
later validation), and stores record the newly written value.
When the warp reaches txcommit, a tx log unit traverses the
redo log to record all threads wishing to access each address;
this allows the SIMT core to resolve all intra-warp conflicts
and coalesce the warp’s surviving transactions.

At commit time, the read and write logs of the coalesced
transaction are sent to validation/commit units (VUs/CUs)
colocated with each LLC bank. Each validation unit verifies
that the value observed by each read in the log corresponds
to the current value in the LLC, and sends a success/failure
message to the SIMT core. The core collects these to
check whether any addresses failed validation, and sends
a commit/abort confirmation back to the CUs. Each CU then
sends the write log values to the LLC, and acks to the
core. Once the core has collected acks from all CUs, the
warp continues execution. Transactional consistency requires
each transaction to be validated and committed atomically,
so while one transaction goes through the two-round-trip
validation/commit sequence, other transactions must wait.

WarpTM also includes a temporal conflict check mech-
anism (TCD) that allows read-only transactions to commit
silently. A TCD table at the LLC that records the physical

1We discuss other GPU proposals [26, 30, 31] in Sec. VII.
2In NVidia terminology, a GPU core’s local memory is an address range

of the global address space reserved for that core. As with the rest of the
address space, local memory is cached in the GPU cache hierarchy.
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clock cycle number of the last store to each address; the
cycle numbers are updated as transactions commit. Each
transactional load is immediately sent from the SIMT core
to this TCD table; if a read-only transaction has only read
locations modified in the past, it is allowed to bypass value-
based validation and commit silently.

Because GETM uses eager conflict detection, transactions
that have reached txcommit are guaranteed to be free of
conflicts, and commit without additional validation or acks.
GETM retains the SIMT stack modifications and warp-

level transaction coalescing of WarpTM. However, it replaces
the value-based validation and TCD read-only silent commits
with an eager conflict detection scheme (see Sec. IV), which
greatly simplifies the validation/commit unit and substantially
reduces the hardware overhead (see Sec. V and VI).

C. Eager conflict detection and GPUs
Although eager conflict detection is more suitable for high-
thread-count architectures (see Sec. III), the lack of a
natural conflict detection mechanism poses a challenge to
implementing eager conflict detection in GPUs. Prior TMs
with eager conflict detection (e.g., LogTM [27, 28]) have
targeted CPUs, in which conflicts are naturally flagged
when cache lines are invalidated by the coherence protocol.
Unfortunately, extant GPUs lack hardware cache coherence,
so another mechanism must be designed. Another challenge
is scalability, since GPUs have large core counts and many
concurrent warps in each core. This precludes, for example,
mechanisms that collect and broadcast read/write signatures.

To provide a scalable eager conflict detection mechanism,
we take inspiration from the software transactional memory
system TL2 [32]. TL2 uses a global version-clock that is
incremented by every transaction which writes to memory,
and maintains last-written version-clock values for every
memory location. As the transaction accesses memory, it
collects version-clocks for all referenced locations. At commit
time, these clocks are checked to ensure that the transaction
observed a consistent state of memory; if there are no
violations, TL2 acquires locks for all locations it intends
to modify and finally writes the memory.
In TL2, logical clocks are used to ensure consistency,

but conflict detection is still performed lazily at commit
time. In addition, the global version clock must be shared
among multiple cores, which relies on the underlying cache
coherence protocol. We leverage the idea of providing
consistency via logical clocks, but use them to implement
early conflict detection, and design a distributed logical clock
protocol that does not need cache coherence.
We propose GPU Eager Transactional Memory (GETM),

a novel GPU hardware TM design. Unlike prior eager TMs,
GETM does not rely on coherence or signature broadcast.
Instead, GETM combines encounter-time write reservations
with a logical timestamp mechanism to detect conflicts as
soon as they occur, and to allow off-critical-path commits.
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Figure 3. Time per transaction spent executing transactional code (top),
waiting for aborting transactions in the same warp and concurrency limits
(centre), and total time spent in transactions (bottom), as the number of
warps allowed to concurrently run transactions grows. Measurements from
the HT-H hashtable benchmark, normalized to the highest data point.

III. GPUs favour eager conflict detection

In this section, we argue that eager conflict detection is
particularly suited to the large number of threads concurrently
executing in a GPU, because the long commit latencies inher-
ent in lazy detection form a key bottleneck as concurrency
grows. This is not the case for CPUs, where TMs with eager
conflict detection, such as LogTM [27], are outperformed by
lazy [33] or partially lazy [34] variants.

To test this intuition, we modified the state-of-the-art GPU
TM design WarpTM [25] to emulate eager conflict detection
(cf. Fig. 2) and examined how it performs as the number
of warps per SIMT core grows. WarpTM uses lazy conflict
detection and lazy versioning (see Sec. II for details), and
commits transactions via two core↔LLC round trips: (i) the
transaction log is sent to be value-validated at the LLC
banks; (ii) the LLC sends back validation success/failure
status; (iii) the core collects the responses and (if all banks
reported success) instructs the LLC to start commit; (iv) the
LLC banks acknowledge commit completion; (v) the core can
resume executing the relevant warp. Eager conflict detection
needs to check only the currently accessed memory location,
but must be repeated for every access; therefore, to emulate
an eager-lazy design, we hacked WarpTM to run validation
(i)–(ii) for every transactional access, with no latency.

Fig. 3 (top) shows how the original WarpTM (-LL) and
idealized eager-lazy variant (-EL) perform as permitted
concurrency grows on the hashtable insertion workload HT-H.
With an increasing number of transactions, the number of
cycles spent executing each transaction (including retries)
grows much faster for the variant with lazy conflict detection
than for the eager version. This is because increasing
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Figure 4. WarpTM with lazy and eager conflict detection compared
with hand-optimized fine-grained lock implementations. Top: cycles for
transactional segments only; bottom: tx and non-tx segments. Optimal
concurrency is used for all configurations.

concurrency increases conflicts and causes transactions to be
retried more times. For each retry, WarpTM-LL incurs the
two round-trip latency of lazy value-based validation, making
each attempt far more expensive than in WarpTM-EL.
Fig. 3 (centre) shows how long transactions wait to

commit, either because of concurrency throttling or because
of waiting for diverged threads in the same warp to abort the
transaction. Because the value-based validations in WarpTM-
LL are expensive, subsequent transactions wait longer than in
WarpTM-EL. For WarpTM-EL, wait time decreases as more
warps can execute and cover commit latency; for WarpTM-
LL, however, increasing concurrency increases the commit
queue backup and therefore the total wait cost.
The overall runtime spent in transactions is shown in

Fig. 3 (bottom). This explains why the optimal concurrency
for WarpTM-LL is 2 transactional warps per SIMT core [25],
and demonstrates that eager conflict detection can support
substantially more concurrency with much lower overheads.

Note that this effect is peculiar to architectures with high
thread-level concurrency, such as GPUs. Most CPUs run 1–2
threads per core, and have few cores per die. This places
them on the left of Fig. 3 (top), where the lazy and eager
versions execute similar number of transactional cycles.

To quantify the overall performance potential of eager
conflict detection, we simulated a range of TM benchmarks
using the lazy and eager variants of WarpTM, as well as
the equivalent non-TM versions using hand-optimized fine-
grained locks. Fig. 4 (top) shows that execution and wait
cycles spent in transactions are substantially reduced in the
eager variant, and Fig. 4 (bottom) shows that this translates
to faster overall execution time.

IV. GETM transactional memory
In this section, we sketch an overview of how GETM
provides transactional atomicity, consistency, and isolation,
and describe how it tracks the necessary metadata.

The description here focuses on the GETM protocol, how
transactions execute, and how metadata evolves. The high-
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Figure 5. Overall architecture of a SIMT core with GETM. Shaded blocks
are added for transactional memory support.

level architecture is shown in Fig. 5; implementation details,
including the metadata and queueing data structures present
at the LLC, are described in Sec. V.

A. Atomicity, consistency, and isolation
We first describe the transaction logs that provide atomicity,
and then the logical timestamp and access-time locking
mechanisms used to ensure consistency and isolation.

Transaction logs. As in prior work [24, 25], transactions
are managed at warp level, and each warp keeps a redo log
in the SIMT core’s existing local memory.
In contrast to GETM, prior work required sending the

entire log (reads and writes) to the commit units for validation
at commit time. Because GETM uses eager conflict detection,
transactions that have reached txcommit are guaranteed to
succeed, and commit-time validation is not necessary. Instead,
a committing transaction transmits only the transactional
writes from the redo log (typically a fraction of the entire
log), so that the write data can be stored in the LLC.
In addition to being logged, all transactional accesses

are sent to the LLC for eager conflict detection, using the
timestamp and lock mechanisms described below.

Logical timestamps. GETM uses distributed logical
timestamps to provide transactional consistency, and each
transaction executes at a specific logical timestamp. To
guarantee consistency, GETM must ensure that a running
transaction (a) does not observe stale values of locations
changed by logically earlier transactions, (b) does not observe
values written by logically later transactions, and (c) does
not alter values already seen by logically later transactions.
The logical timestamps tracked by GETM are shown in

Table I. Firstly, each warp keeps a logical timestamp warpts,
corresponding to the memory state observed by the last
transaction. This timestamp starts at 0, and is advanced when
transactions abort (as discussed below). All new transactions
started by this warp execute at logical time warpts.

Each cache line in the shared LLC has a write timestamp
wts, equal to one more than the logical time of the last write,

Tracked per warp

warpts the logical time at which transactions from this warp atomically execute

Tracked per LLC cache line

wts one higher than the logical time when this location was last written
rts the logical time when this location was last read
#writes # writes to this location (if non-zero, location is locked by a transaction)
owner the owner of the write reservation (if # writes is non-zero)

Table I. Metadata tracked by GETM.
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i.e., 1 + warpts of the logically latest transaction to attempt
a write. If a transaction T attempts to access a cache line L
where L.wts > T .warpts, it means that L was written by a
transaction logically later than T , and T must abort.

Every cache line also contains a read timestamp rts, equal
to the logical time of the last read, i.e., warpts of the last
transaction to read it. A transaction T may read lines with
any rts, but writing a cache line L where L.rts > T .warpts
would overwrite a value which has already been observed
by a later transaction, and is not permitted.

The rts and wts timestamps are maintained eagerly: that is,
transactional loads update rts and transactional writes update
wts at the time of the request, regardless of whether the
transaction will eventually commit. The updated timestamps
are not reverted if a transaction aborts; while this might
unnecessarily abort some future transactions, those will be
restarted, and consistency is not compromised.

Encounter-time locks. Unlike timestamps, transactional
write data is not stored in the LLC until the transaction
reaches its commit point. This creates an isolation problem if
a transaction T1 modifies a location and a logically later but
physically concurrent transaction T2 accesses this location:
the value that should be seen by T2 depends on whether T1
will commit successfully, but T1 is still in progress.

To avoid this issue, GETM uses locks to prevent T2 from
reading the location until T1 has committed. Each cache
line has two additional fields to support this: #writes and
owner (see Table I). When a transaction T first encounters a
previously untouched cache line L, it reserves L by setting
L.#writes to 1 and L.owner to the transaction’s global warp
ID (because transactions are coalesced per warp, this uniquely
identifies a running transaction; see Sec. II-B).
Now when T2 accesses L (either for reading or writing),

it must check whether L has been reserved. If L.#writes , 0
and L.owner , T2, transaction T2 proceeds with the rts/wts
checks described above; if the checks fail then T2 is aborted,
otherwise T2 stalls until T1 commits. (We discuss the stall
buffer where stalled transactions are queued in Sec. V.)
The owner/#writes mechanism also allows a transaction

to repeatedly write the same location. If T is already the
owner of a cache line, it bypasses the rts and wts timestamp
checks, and writes the line. This is safe because T must have
previously satisfied the rts and wts timestamp constraints, and
updated wts. As any other transaction attempting to update
the line since that time would have been stalled, neither rts
and wts could have been altered since T’s reservation.
Aborts and advancing logical time. The logical time

observed by each warp (warpts) advances when transactions
are aborted. When a transaction aborts, it reports to the core
the latest logical timestamp t it attempted to read or write
(the abort cause). Since the transaction will fail again unless
it restarts at a time later than t, warpts is set to t + 1.
For example, if a transaction T has aborted because of

reading a cache line L, it must be because the cache line is

logically newer than the transaction, i.e., L.wts > warpts. In
this case, the SIMT core sets warpts to L.wts + 1, and T is
restarted. Similarly, if T aborts because of a write, warpts is
set to max(L.rts, L.wts) + 1, and the transaction restarts.

Commit and cleanup. When all threads in a warp reach
the end of the transaction (commit or abort), the SIMT core
serializes the write logs of all threads and sends them to
the LLC. For all threads that have successfully reached the
commit point, the core sends the address, write data, and
write count (since multiple writes may have been coalesced).

Once this commit/abort log is received, each entry is writ-
ten to the LLC and the relevant #writes entry is decremented.
Once #writes in a cache line has reached 0, the cache line
fully reflects the atomic transaction update, and can now be
accessed by other transactions.
Aborted transactions instead send the address and write

count for each modified cache block to facilitate cleanup. The
#writes in each cache line is updated as above; after #writes
has reached 0, the cache line reflects its pre-transaction state,
and may be accessed by other transactions.

The life of a transactional access. Fig. 6 shows how a
transactional read or write is processed in GETM.

Owner check Ê. If #writes is non-zero but the owner field
matches the current transaction, the line must be locked
and the access succeeds Ë. Stores only increment #writes
(since wts was already set by the previous write), while loads
potentially update rts if it is less than warpts.

Timestamp check Ì. A transaction that attempts to load an
address and finds its wts younger than the transaction’s own
warpts has detected a WAR conflict – i.e., another transaction
with a younger warpts has already written to the location
– and must abort Í. Similarly, a transaction that writes a
location but finds either wts or rts to be younger than warpts
must also abort, since a logically younger transaction has
either written the location or observed its value Í.
Abort notification Í. If the version check discovers a

conflict, the transaction must be aborted. To minimize the
chances of the transaction aborting again, the SIMT core
is sent the highest timestamp seen so far at the LLC; this
will be used to update warpts and restart the transaction.
Meanwhile, the core notes that the thread has aborted, and
will clean up any reservations made when the entire warp
reaches txcommit or when all threads have aborted.
Write lock check Î. Next, the transactional memory

operation checks whether the accessed location has been
reserved by another warp (i.e., whether #writes is non-zero).
If not, the operation succeeds without conflict: a load will
update rts (if < warpts) while a store will set #writes to 1
and update the location’s wts with the transaction’s warpts Ï.

Queue Ð and retry Ñ. Accesses that passed the timestamp
check but do not own the active lock must be logically
younger than the lock owner. To avoid unnecessary aborts,
these requests are queued until the owner transaction commits.
After the lock is released, the queued transactions will retry.
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COMMIT / ABORT: at SM core

1. Serialize write log for all threads in warp
        – for committing threads, send <addr, write data, #writes>
        – for aborting threads, send <addr, #writes>

2. Transmit write log to commit unit at LLC partition

3. Update warpts to max(warpts, observed rts, observed wts) + 1

COMMIT / ABORT: at LLC partition commit unit

1. Coalesce writes to the same cache lines
        – combine write data
        – add #writes from each coalesced operation

2. Commit each line
        – write line to LLC
        – decrement relevant #writes entry

wid = A.owner
& A.#writes > 0?

A.#writes > 0?warp #wid:
ST A @ warpts

warpts ≥ max(A.wts,A.rts)?

ABORT (WAW, RAW)
report max(A.wts,A.rts)
     to core

SUCCESS,
A.#writes++ QUEUE @ LLC

(WAW)

no

yes
update log,
req to LLC

yes
nono

yes

SUCCESS,
A.wts = warpts+1,
A.owner = wid,
A.#writes++ 

retry

wid = A.owner
& A.#writes > 0?

A.#writes > 0?warp #wid:
LD A @ warpts

warpts ≥ A.wts?

ABORT (WAR)
report A.wts to core

SUCCESS,
A.rts = max(warpts,A.rts)

QUEUE @ LLC (RAW)

no

yes

update log,
req to LLC

yes
no

no
yes SUCCESS,

A.rts = max(warpts,A.rts)
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Figure 6. The flowchart for load, store, and commit/abort logic in GETM.
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B. Walkthrough example

Fig. 7 illustrates how the GETM protocol operates on two
conflicting transactions from the bank transfer example
(Fig. 1); in this benchmark, accounts are modelled as unique
memory locations. The first transaction (tx1) transfers some
amount from account A to account B, while the second (tx2)
transfers another amount from B to A. Transaction tx1 starts
at warpts = 20, and transaction tx2 starts at warpts = 10.
The central grey line represents the LLC, and the thinner
black arrows represent messages between the cores and the
LLC. The interleaving of the accesses from each transaction
has been chosen to illustrate how the eager conflict detection
and queueing mechanisms work; in reality, any interleaving
of the two transactions could occur.

First, tx1 loads and stores location A: the load updates A’s
rts to match the transaction’s warpts (i.e., to 20), and the
store updates the wts of A to exceed that of tx1 (i.e., to 21).
Then tx2 does the same with B, updating its wts to 11 and
rts to 10. At this point, tx1 and tx2 have accessed disjoint
locations and so far do not conflict. The transaction metadata
for addresses A and B at this point are shown in table Ê.
Next, tx2 attempts to read location A, previously altered

by tx1. Because tx2.warpts < A.wts, the load fails the version

check and will abort tx2 (cf. Fig. 6). The LLC will notify
the requesting core that the transaction been aborted, and
that the next warpts should be later than 21. The core will
then send the write/abort log for tx2 to the LLC, which will
release the reservation for B by setting the # writes field to
0. When tx1 now sends load and store requests for B, both
requests succeed since tx2 had an older version and its write
lock was cleared as tx2 aborted. At this point, the metadata
for A and B correspond to table Ë.
Transaction tx2 now restarts at the core, with a higher

warpts of 22. When its first load request (for B) arrives at
the validation unit, it passes the version check but finds B
reserved; the load is therefore queued in the VU’s stall buffer
and will be retried as the conflicting transaction commits.

Meanwhile, tx1 gets to its commit instruction. Because all
of its memory accesses have passed eager conflict detection,
the transaction is guaranteed to succeed. The core therefore
sends the write log to the LLC and moves on. As the write
log is processed, write reservations (#writes) for both A and
B are reset. Table Ì shows the metadata at this point.
Once the commit of tx1 has finished and released the

reservations on A and B, any stalled transaction accesses are
retried; in this case, this is the load of B from tx2, which

6
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now succeeds. Transaction tx2 can then continue with its
remaining memory accesses, and will succeed.

V. Implementation details

Adding transactional memory support requires modifications
to both the SIMT core and the memory partition that houses
the LLC slice and a memory controller: we need to modify
the core to retry aborted transactions and record redo logs,
and to add validation and commit hardware to each memory
partition. Fig. 5 shows the overall architecture components
of a GPU core extended with GETM.

A. SIMT core extensions

SIMT Stack. Adding transactional memory support to a GPU’s
cores requires changing the SIMT stack to track which threads
in the warp are executing transactions and which must be
retried. To implement this, we leverage the modified SIMT
stack proposed by Fung et al [24]. This mechanism is similar
to branch divergence hardware [35]: for each warp, the top of
the SIMT stack tracks the threads that are currently executing,
while the stack entry immediately below tracks threads that
have aborted and must be retried.
Transaction management. While individual threads can

run separate transactions, commits occur at warp granularity
when all threads in the warp have arrived at the commit
point [25]. Nevertheless, transactions remain logically at
thread granularity: when some of the warp’s threads abort,
they are automatically retried via the extended SIMT stack
after the entire warp reaches the commit point [24].

Transaction logs. The GETM versioning mechanism is the
same as in GPU transactional memory [24]. Logs are stored
in each SIMT core’s local address space, and cached by
the L1/LLC caches. Although GETM only requires a write
log, we also record a read log to permit intra-warp conflict
detection [25]; in this technique, each transactional access is
first checked against the local per-warp read and write logs
and aborted if it conflicts with other threads in the same
warp. At commit time, however, the read log is discarded
and only the write log is sent to the commit units.
Forward progress. Aborted transactions ensure progress

by restarting with a probabilistically increasing backoff [36].

B. Validation unit

GETM protocol actions on the LLC side are carried out
by validation units (VUs), one of which is colocated with
each LLC bank. Each VU consists of (a) metadata storage
structures to track the last-written and last-read versions for
each address, and (b) a structure to buffer requests that found
a location locked but were younger than the current owner.

1) Transaction metadata storage: Because GETM explic-
itly tracks versions to enable eager conflict detection, it must
keep all metadata (wts, rts, # writes, and owner; see Table I)
for all locations that are part of any in-flight transaction, and

stash

H

overflow
(in LLC)

H H H H H H H
address

mux min

precise metadata approx. metadatamux

eviction

rtswtstag # writesowner rtswts
Figure 8. Transaction metadata table microarchitecture

some metadata (wts and rts) for all locations that have been
(or could be) accessed transactionally.

These requirements pose some challenges: firstly, transac-
tions could be very long (and, in general, unbounded), so fast
access to a potentially large lookup structure is necessary;
secondly, potentially all addresses could be accessed transac-
tionally, and tracking metadata for them all is impractical.
Our solution relies on two observations. The first is that

very long transactions are likely to be rare in well-tuned code;
therefore the metadata table can be sized for the common
case and provide a spillover mechanism (like in Unbounded
TM [37]). The second is that metadata for addresses that are
not being written by in-flight transactions can be maintained
approximately provided that the only errors are overestimates:
if the lookup mechanism reports a higher rts or wts, additional
transactions may abort, but correctness will be preserved.

Fig. 8 shows the microarchitecture of the metadata storage
structure. Our implementation has one such structure at
every LLC partition, responsible for the same address range.
It consists of two tables, accessed simultaneously during
lookups: the first tracks precise metadata for addresses
accessed by in-flight transactions, while the second tracks
approximate rts and wts for all other addresses.

Precise metadata for in-flight accesses. The precise meta-
data table is similar to a cuckoo hash table [38], extended with
a small stash [39] (conceptually similar to a victim cache);
even a small stash allows the cuckoo table to maintain higher
occupancy with limited resources [39]. When inserting a
〈key, value〉 pair causes too many swaps in the cuckoo table,
the last 〈key, value〉 pair swapped out during the insertion
process is placed in the stash, and during lookups the stash
is searched in parallel with the cuckoo table itself. We use
a four-way cuckoo table with four randomly generated H3
hashes [40] and a 4-entry fully associative stash. To permit
very long transactions, the precise table and stash can spill
to an unbounded overflow space located in main memory
and cached in the LLC. In our experiments the overflow
space was never used, so we organized the overflow as a
linked list; a commercial implementation would likely use
an asymptotically faster design such as a balanced tree or
another hashtable layer in main memory.
Unlike the original cuckoo table, our design allows the

7
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tag ld/stwidtxver ld/stwidtxver·      ·      ·
tag ld/stwidtxver ld/stwidtxver·      ·      ·

tag ld/stwidtxver ld/stwidtxver·      ·      ·

·   ·   ·

· · ·

· · ·

address
(assoc.
lookup)

to validation unit
(retry access)

min txver for this address

Figure 9. Stall buffer microarchitecture

insertion process to terminate by evicting an entry that has
not been reserved by any transaction (i.e., # writes is zero).
Since the remaining metadata — wts and rts — can be
safely approximated, the evicted entry is inserted into the
approximate metadata structure described below.

Approximate metadata for inactive locations. The simplest
design for approximate version tracking is a pair of registers
tracking the maximum wts and rts that have been evicted from
the precise table. When a lookup misses in the precise table,
it is reinserted using the approximate wts and rts values from
the two registers. When we conducted experiments with this
configuration, however, we found that the version numbers
increased very quickly and caused many aborts.
To combine efficient storage of large numbers of evicted

addresses with the ability to discriminate among many of
them, we use a recency Bloom filter [24]. This structure
consists of several (in our case, four) ways indexed by
different hashes of the lookup address (we again use H3
hashes). Each address maps to one entry in each way, and
each entry stores the maximum wts and rts of all inserted
addresses that map to it. On insertion, the wts and rts in each
way are only updated if they exceed the stored values (which
may have come from a hash collision), and on lookup the
minimum wts and rts among the four ways are returned.
Timestamp rollover. Unlike physical timestamps [25],

logical timestamps advance very slowly. In our experiments,
the increment rates ranged from one increment in 1,265 cycles
to one in 15,836 cycles, depending on the benchmark. At
this rate and with a 1 GHz clock, 32-bit timestamps will roll
over less than once every 1.5 hours, and 48-bit timestamps
will roll over less than once every 11 years.

When a validation unit detects a rollover, it must ensure that
(a) all validation units roll over atomically, and (b) all SIMT
cores have rolled over. The first task can be accomplished via
two messages (containing the VU ID to break ties) sent via
a single-wire ring connecting all validation units. The first
message indicates that the recipient should stall and forward
the message to its neighbour; all VUs will be known to have
stalled when the message reaches back to the originating
VU. The second message indicates that the recipient should
roll over and continue execution. (Alternately, the existing
interconnect can be used for this purpose with an ack–reply
protocol). Cores roll over on a request from the VUs sent
over the interconnect. Once the cores have acked the request,
the VU knows that no requests are in flight; it flushes the

Baseline GPU

SIMT core config 15 cores, 48 × 32-wide warps / core, 2 × 16-wide SIMD
warp scheduler greedy then oldest (GTO)
in-core storage 32,768 registers / core, 16KB shared memory / core
L1 data cache 48KB per core, 128-byte lines, 6-way assoc.
L2 cache (LLC) 128KB / partition, 128-byte lines, 8-way assoc.,
interconnect 2 xbars (1 up, 1 down), 288GB/s each, 5-cycle latency
operating frequency SIMT core: 1400 MHz, interconnect: 1400 MHz,

memory: 924 × 4 (quad-pumped)
GDDR5 6 partitions, 32 queued requests each, FR-FCFS,

Hynix H5GQ1H24AFR timing, total BW 177GB/s
memory scheduling latency L1: 1 cycle; LLC: 330 cycles; DRAM: 200 cycles

Transactional memory support

concurrency (tx warps/core) 1, 2, 4, 8, 16, unlimited (optimal for each benchmark)
operating frequency validation unit: 1400 MHz, commit unit: 700 MHz
metadata storage precise: 4K entries (total) in 4-bank cuckoo HTs,

4-entry stashes
approx.: 1K entries (total) in 4-bank recency Bloom filters

stall buffer 4 lines with 4 entries each, per partition
validation BW 1 request/cycle per partition
commit BW 32B/cycle per partition
intra-warp conflict detection two-phase parallel, 4KB ownership table / tx warp

Table II. Simulated GPU and memory hierarchy.

stall buffer and metadata tables and resumes.
2) Stall buffer: Requests that passed the version check but

found the address locked are queued in a stall buffer until
the relevant transaction commits or aborts (see Sec. IV).
The organization of this structure, shown in Fig. 9, is

similar to a store buffer or an MSHR, but tracks several
requests for each address (from different warps contending
for the same location). When a committing transaction
decrements the #writes count to 0, it checks whether any
stall buffer entries are waiting on the relevant address; if so,
the oldest request (i.e., with the minimum warpts) re-enters
the validation unit. If the buffer is full, the transaction aborts.

C. Commit-time coalescing
The commit unit receives write logs from SIMT cores, coa-
lesces multiple accesses to the same 32-byte regions, writes
the data to the LLC, and decrements the relevant #writes
entries. While coalescing is not needed for correctness, it
efficiently uses the GPU’s wide LLC port.

To coalesce writes, we use a simplified variant of the ring
buffer used in KiloTM [24] and WarpTM [25]. In contrast
to these proposals, in GETM the commit unit receives only
the write log, so the buffer can be substantially reduced; we
conservatively size it to half of that in prior work.

VI. Results and discussion
A. Methods
Simulation setup. We follow the methodology established in
previous GPU hardware transaction memory proposals [24–
26]. GPGPUsim 3.x [41] is used to simulate the GPU and
modified to implement GETM and prior proposals. We
estimated area and power overheads of the structures required
to implement TM by modelling them in CACTI 6.5 [42],
conservatively assuming that all structures are accessed every
cycle and accounting for the higher validation unit clock. We
assumed a 32nm node (the smallest supported by CACTI 6.5).
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name abbreviation description

Hash Table (CUDA) HT-H populate an 8000-entry hash table
HT-M populate an 80000-entry hash table
HT-L populate an 800000-entry hash table

Bank Account (CUDA) ATM parallel funds transfer (1M accounts)
Cloth Physics [45] (OpenCL) CL cloth physics (60K edges)

CLto tx-optimized version of CL
Barnes Hut [46] (CUDA) BH build an octree (30K bodies)
CudaCuts [47] (CUDA) CC image segmentation (200×150 pixels)
Data Mining [48] (CUDA) AP data mining (4000 records)

Table III. Summary of the benchmarks used for evaluation.
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Figure 10. Transaction-only execution and wait time, normalized to
WarpTM (lower is better). Note that EAPG is idealized.

Table II describes the simulation setup. For fair comparison
of the eager conflict detection mechanism with the value-
based detection from prior proposals, we keep the same base-
line: a GPGPU similar to NVIDIA’s GTX480 (Fermi [43])
with 15 cores, 6 memory partitions, and latencies derived
from microbenchmark studies [44]. To investigate scalability
to higher core counts, we also simulated a configuration with
56 cores in 28 clusters, and a 4MB L2 cache in eight 8-way
banks; for WarpTM, we doubled the recency filter size, and
for GETM we doubled only the precise metadata table.

Baselines. We compare GETM against WarpTM [25], and
an idealized implementation of the EarlyAbort/Pause-n-Go
(EAPG) proposal [26].3 We use TM benchmarks from prior
work [24, 25]; they are summarized in Table III.

B. Results
Performance and crossbar traffic. Fig. 10 shows the
total number of cycles spent executing transactions and
waiting for other transactions to finish, normalized to the
WarpTM baseline. For most workloads, GETM reduces both
transaction execution time and wait time. CC and AP have
contention over few memory locations, and GETM sees many
aborts; because commits and aborts are cheap in GETM,
however, this is still faster than WarpTM and EAPG. In CC
and AP, transactions spend little time waiting because they
account for a small portion of the total runtime. We find that,
for these benchmarks, even idealized EAPG is ineffective,
as only 5.2% aborts come from the early-abort mechanism
and 1.3% transactions are ever paused. Essentially, by the
time a broadcast update reaches the cores, most conflicting
transactions have already been sent for validation/commit. In
fact, EAPG underperforms WarpTM because the additional
early-abort broadcasts congest the core↔LLC interconnect

3Specifically, write signatures broadcast to cores were idealized as 64-bit
messages, refcount table updates on the LLC side were idealized to one
cycle for the entire tx log, and the early conflict check was made instant.
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(even though these are idealized as single header-only flits).
We expect that EAPG can be effective only with extremely
long transactions.
Overall performance is shown in Fig. 11: on average,

GETM outperforms WarpTM by 1.2× (gmean) and is within
7% of the fine-grained lock baseline. The trend mirrors that of
the transactional execution and wait time above. Benchmarks
with high contention benefit more, because GETM aborts
doomed transactions without the need to queue at the LLC for
value-based validation, and show substantial improvements
(up to 2.1× for HT-H). Low-contention workloads perform
comparably to WarpTM.
The improved performance comes at a minor cost in

interconnect traffic compared to WarpTM (Fig. 12). Although
GETM does not need to transmit the transaction read log
at commit time, it needs to acquire locks for every write at
encounter time, whereas WarpTM only contacts the TCD for
loads. In addition, despite better performance, GETM has a
higher abort rate, which adds to the interconnect traffic load.

Sensitivity to validation unit parameters. Because the
validation unit contains a cuckoo-like structure where worst-
case insertions can take many cycles, we measured the
average number of validation unit cycles spent on accessing
the metadata tables for each request (Fig. 13). Even under
very high load factors (> 99%), long insert chains where
all entries have #writes > 0 are very unlikely; when they do
occur, the stash is effective as predicted theoretically [39].
We also investigated the effect of changing metadata

table sizes and granularity (Fig. 14); we tested 2K, 4K,
and 8K entries GPU-wide, and 16, 32, 64, and 128-byte
granularity assuming 4K table entries GPU-wide. A 2K
metadata footprint is too small (and, indeed, requires a
larger stash), especially when parallelism is abundant (e.g.,
HT-H); because 8K entries do not significantly outperform
4K entries, we settled on 4K entries for other parts of
the evaluation. Decreasing granularity generally improves
performance because false sharing is reduced; however, it
also reduces effective table size when parallelism is high and
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the total number of addresses accessed is higher. We chose
32-byte granularity for all other tests.
Since requests that pass the timestamp check but find

their target location reserved are queued in the stall buffer,
we measured stall buffer performance. Fig. 15 shows the
maximum total occupancy of all stall buffers; this never rises
above 12 requests across the entire GPU. Fig. 16 shows that
very few requests are queued up on average for any given
address. In the rest of the evaluation, we conservatively sized
the stall buffers to 4 addresses with space for 4 requests each.

Abort rates under contention. Both WarpTM and GETM
limit transactional concurrency to optimize performance. Ta-
ble IV lists the best concurrency settings for each benchmarks
— i.e., the number of warps in each core allowed to run
transactions concurrently — and the resulting number of
aborted transactions. With abundant parallelism (e.g., HT-
H), GETM is efficient at higher concurrency than WarpTM.
The eager conflict detection in GETM also translates to
dramatically faster commits and aborts than the value-based
conflict detection in WarpTM, so GETM can handle higher
abort rates and still perform substantially better.

Scalability. To investigate scalability at higher core counts,
we also simulated WarpTM and GETM in a configuration
with 56 SIMT cores and a 4MB LLC; Fig. 17 shows the
results. While performance differences vary slightly per
benchmark, the overall trends match the 15-core setup.

Silicon area and power. Table V shows the area and power
overheads introduced by adding TM support. Because GETM
removes most of the structures needed by WarpTM, it has
3.6× lower area overheads and 2.2× lower power overheads
(4.9× and 3.6× lower than EAPG). Overall, GETM adds
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Figure 15. The maximum number of addresses queued at any given time
(total of all stall buffers in the GPU).
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Figure 16. The average number of requests per address that concurrently
reside in the stall buffer.

∼0.2% area to a GTX 480 die scaled down to 32nm.

VII. Related work

GPU TM. To date, all hardware-level transactional memory
proposals for GPUs have been based on KiloTM [24]; this
system combines lazy version management with lazy, value-
based conflict detection. Follow-up work [25] extended
KiloTM with an intra-warp conflict detection mechanism
and a silent-commit filter for read-only transactions based
on physical timestamps. A later proposal [26] added global
broadcast updates about currently committing transactions,
and leveraged this to pause or abort doomed transactions; we
use an idealized version of this as one of our baselines. GPU-
LocalTM [30] is a limited form of transactional memory
that guarantees atomicity only within a core’s scratchpad;
Bloom filters [49] are used for conflict detection. Software
transactional memory proposals for GPUs have used either
per-object write locks [50] or combined value-based detection
with TL2-like timestamp approach [51]. Given special DRAM
subarrays [52], and at the cost of substantial memory
overheads and extensive OS/software changes, GPU snapshot
isolation [31] can reduce abort rates in long transactions
by buffering many concurrent memory states; it retains two-
round-trip lazy validation and must update snapshot versions
in DRAM, resulting in even longer commit latencies.

CPU HTM. Since hardware-level transactional memory
was first proposed [12, 13], many CPU implementations have
been proposed. Many leverage the existing inter-core coher-
ence mechanism to identify conflicts, either my modifying the
coherence protocol [23, 33, 34, 53], adding extra bits to the
coherence state [27, 54, 55], or leveraging coherence to update
read/write signatures [28, 56, 57]. Existing GPU coherence
proposals, however, cannot support eager TM: they either
rely on special language-level properties [58], eschew write
atomicity [59], or cannot support detecting conflict times [60].
Other TM proposals [29, 33, 61–64] rely on signature or
update broadcasts, or on software-assisted detection [65–67].

Timestamp-based TM. Transactional memory schemes
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best concurrency aborts / 1K commits

WTM EAPG WTM-EL GETM WTM EAPG WTM-EL GETM
HT-H 2 2 8 8 119 113 122 460
HT-M 8 4 8 8 98 84 83 172
HT-L 8 4 8 8 80 78 78 207
ATM 4 4 4 4 27 26 25 114
CL 2 2 4 4 93 91 119 205
CLto 4 2 4 4 110 61 72 176
BH 2 2 8 ∞ 93 86 145 865
CC ∞ ∞ ∞ ∞ 6 5 1 38
AP 1 1 1 1 231 237 204 9188

Table IV. Optimal concurrency (# warp transactions per core) settings and
abort rates for different workloads. (WTM = WarpTM.)
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element area [mm2] power [mW]

WarpTM

CU: LWHR tables (3KB×6) 0.108 21.84
CU: LWHR filters (2KB×6) 0.03 12.00
CU: entry arrays (19KB×6) 0.402 100.62
CU: read-write buffers (32KB×6) 1.734 132.48
TCD: first-read tables (12KB×15) 0.375 113.25
TCD: last-write buffer (16KB total) 0.031 9.86

total WarpTM 2.68 390.05

EAPG (in addition to WarpTM)

CAT: Conflict Address Table (12KB×15) 0.6 153.3
RCT: Reference Count Table (15KB×6) 0.294 75.6

total EAPG 3.574 618.95

GETM (independent of WarpTM)

CU: write buffers (16KB×6) 0.522 85.56
VU: precise tables (64KB total) 0.181 69.59
VU: approximate tables (8KB total) 0.018 8.51
warpts tables (192B×15) 0.015 10.65
stall buffer (30B×4×6) 0.0004 2.67

total GETM 0.736 176.98

Table V. CACTI area and power (dynamic + static) estimates for
WarpTM [25], EAPG [26], and GETM overheads (32nm node). CU: commit
unit; TCD: temporal conflict detection; VU: validation unit.

based on logical clocks share commonalities with timestamp-
based approaches. These have been used mainly in soft-
ware TMs to maintain consistency [68]; hardware TMs
have leveraged them to maintain fairness and forward
progress [27, 37, 69], snapshot isolation [70], and in prior
GPU work to avoid validation of read-only transactions [25].

Logical-time coherence and consistency. Lamport first
observed that consistency guarantees can be maintained
using logical clocks [71]; the read and write versions
tracked by GETM use this insight. Logical clocks have also
been used to implement coherence in a logically ordered
bus (e.g., [72, 73]), to extend snooping [74, 75], and by
directly tracking access timestamps [60, 76, 77]; two of these
proposals [60, 76] also use logical timestamps to enforce

sequential consistency. Logical clocks were also used to
dynamically verify consistency models [78]. While the
concepts of coherence and consistency are related to TM,
they do not offer atomicity and isolation for access sequences
as transactional memory does.

VIII. Conclusions
We have presented GETM, the first full GPU transactional
memory mechanism with eager conflict resolution. By
combining explicit version tracking with encounter-time write
reservations, GETM enables efficient conflict detection and
off-the-critical-path commits. GETM is up to 2.1× faster than
the state-of-the-art GPU TM (1.2× gmean), while incurring
3.6× lower area overheads and 2.2× lower power overheads.
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