
Appears in the Proceedings of the Design, Automation, and Test in Europe Conference and Exhibition (DATE), 2017

Gaussian Mixture Error Estimation
for Approximate Circuits

Amin Ghasemazar and Mieszko Lis
The University of British Columbia

{aming,mieszko}@ece.ubc.ca

Abstract—In application domains where perceived quality is
limited by human senses, where data are inherently noisy, or
where models are naturally inexact, approximate computing
offers an attractive tradeoff between accuracy and energy or
performance. While several approximate functional units have
been proposed to date, the question of how these techniques can
be systematically integrated into a design flow remains open.

Ideally, units like adders or multipliers could be automati-
cally replaced with their approximate counterparts as part of
the design flow. This, however, requires accurately modelling
approximation errors to avoid compromising output quality.

Prior proposals have either focused on describing errors
per-bit or significantly limited estimation accuracy to reduce
otherwise exponential storage requirements. When multiple ap-
proximate modules are chained, these limitations become critical,
and propagated error estimates can be orders of magnitude off.

In this paper, we propose an approach where both input
distributions and approximation errors are modelled as Gaussian
mixtures. This naturally represents the multiple sources of error
that arise in many approximate circuits while maintaining reason-
able memory requirements. Estimation accuracy is significantly
better than prior art (up to 7.2× lower Hellinger distance)
and errors can be accurately propagated through a cascade of
approximate operations; estimates of quality metrics like MSE
and MED are within a few percent of simulation-derived values.

I. Introduction and background
Over the past decade, power and energy considerations have
become a limiting factor for digital hardware design. Recently,
approximate computing techniques [1–4] have been proposed
to address this: the idea is that smaller, less complex circuits
that compute almost the correct result are acceptable in
many application domains. Domains that rely on sampling
inherently noisy signals — ranging from biochemistry to radar
processing — are tolerant of small errors, as are machine
learning techniques such as deep neural networks.
A wide range of custom-designed approximate computing

elements have been proposed, ranging from functional units
(FUs) like approximate adders [5–9] or multipliers [10–12]
to architectural components like approximate caches [13].
Overclocking and undervolting techniques can turn exact
circuits into approximate variants. Methodologies for auto-
matically approximating FUs in a design flow have also been
proposed [10, 14]; the idea is that modules (e.g., adders) can be
replaced with their approximate equivalents to optimize for a
specific objective (e.g., energy) provided that an output quality
constraint (known as QoS) for the entire circuit is not violated.
Key to such flows is an accurate estimation of the error

introduced by approximate functional units (aFUs). The QoS

depends on both the error generation (by approximate FUs) and
error propagation across the rest of the circuit. Since inputs can
vary a great deal, approximation errors are typically represented
as statistical distributions [10, 14–18]; a key research question,
therefore, is how to represent such distributions with sufficient
accuracy and acceptable space overhead.
Much prior work has focused on modelling the bit error

rate of approximate circuits — i.e., the number of bits that
differ from the exact result [17, 19, 20]; this is appropriate
when each bit represents an independent value (e.g., pixel),
but substantially underestimates errors when bit vectors rep-
resent numerical quantities. Methods that attempt to model
numerical values either model error distributions as single Gaus-
sians [14, 16], or discretize the distribution in exponentially-
sized intervals (2n, 2n+1], with a single count for all errors
in an interval [10, 15]. These are compact, but offer a close
estimate only around one central value (such as 0), and have
poor accuracy when propagated across multiple aFUs.

In this paper, we observe that, while errors are not confined
to small range around a fixed centre, they are also not spread
out randomly across the full range of possible values. Instead,
both error and output values can be efficiently represented and
analytically propagated as a set of Gaussian distributions, i.e.,
a Gaussian mixture model. This formulation also lends itself
naturally to characterizing error distributions for arbitrary aFUs
(such as those generated through synthesis-like flows [20]), as
estimation techniques for such models and their convergence
properties are well known [21–23].
Specifically, this paper makes the following contributions:
• we propose a novel error estimation model based on
Gaussian mixtures that represents both output and error
distributions of aFUs using only a few Gaussians;

• we show that this approach is an effective model for value
distributions observed in real applications;

• we develop rules to propagate output and error distribu-
tions through multiple precise and approximate FUs;

• we describe a space-efficient representation of the intrinsic
error introduced by an aFU;

• we show how aFUs can be characterized through well-
known machine-learning methods like expectation maxi-
mization (EM).

II. Gaussian mixture error estimation (GMEE)
Consider a hypothetical approximate synthesis flow that takes
a precise RTL design and automatically replaces some of the

1



Appears in the Proceedings of the Design, Automation, and Test in Europe Conference and Exhibition (DATE), 2017

cPMF

ePMF

cPMF

ePMF

cPMF

ePMF

A

A

B

B

out

out

Fig. 1. Propagation through an aFU. The element’s transfer function generates
a correct PMF and an error PMF (from the input ePMFs and cPMFs).

computation units (e.g., adders or multipliers) with approximate
versions. Such a flow can be cast as an optimization problem
in which energy is minimized — subject to a minimum output
quality constraint — by replacing some FUs with approximate
versions [10, 14, 16, etc].

A key question that arises is how to estimate the output
quality given a specific choice of approximate compute units.
Exhaustive simulation and simulation-based Monte-Carlo sam-
pling [19] require extensive computation effort and are practical
only for small circuits (such as the FUs themselves) [15]. This
motivates the need for a statistical approach, where statistical
distributions are propagated through the approximate circuit to
estimate the final error metric.

The steps of a statistics-based estimation flow are as follows:
1) obtain expected distributions for circuit inputs (e.g.,

through high-level simulation);
2) propagate the input distributions through the approximate

circuit, keeping track of correct and incorrect values;
3) compute the final error metric from the output distribution.

In this section, we describe how to separately model the
distributions of correct and incorrect values produced by an
aFU, and how to propagate them across the entire circuit.

Reference and approximate distributions. Throughout the
paper we will describe the statistical distributions of correct
and erroneous results as probability mass functions (PMFs),
using the following shorthands:
• The reference PMF (rPMF) refers to the values (e.g.,
outputs) observed in a non-approximate FU. We measure
rPMFs directly by executing the relevant precise operation
(e.g., addition) on the input data.

• The approximate PMF (aPMF) refers to the values
produced by an aFU. We measure these by simulating an
RTL implementation of the relevant aFU.

• The correct-part PMF (cPMF) are the correct outputs
produced by an aFU, i.e., where the output matches that
of the non-approximate version for the same inputs.

• The error-part PMF (ePMF) are the incorrect outputs
produced by an aFU. Together, cPMF + ePMF = aPMF.

Gaussian mixture error model. We represent each PMF
as a sum of a finite number K of weighted Gaussians:

PMF =
K∑
i=1

wiN
(
µi, σ

2
i

)
.

In addition, we make the assumption that the component
Gaussians are independent; this heuristic makes propagation
computations tractable, and fits well with empirical data.

Propagation through non-approximate FUs. The pro-
posed error model, shown in Figure 1, separately propagates the
cPMFs and ePMFs through the datapaths in the design. Each
FU is represented by a value transfer function that depends
on the mathematical operation performed by the unit: this
function combines the unit’s input distributions to produce an
output distribution. For example, consider a non-approximate
adder with two approximate inputs (denoted A and B), and
corresponding input distributions:

aPMFA = cPMFA + ePMFA

aPMFB = cPMFB + ePMFB .

(Note that even though the non-approximate adder will not
introduce any errors, it will propagate input errors to its output.)
For adders, the output PMF is the distribution of the sum,

and so aPMFout is the convolution of the input PMFs:
aPMFout = aPMFA ∗ aPMFB .

The Gaussian mixture representation and the independence
assumption make it straightforward to propagate the cPMFs
and ePMFs through the transfer functions. For example, the
correct-part PMF of an adder output is

cPMFout = cPMFA ∗ cPMFB

=

K∑
i=1

L∑
j=1

wiN
(
µi, σ

2
i

)
∗ w jN

(
µ j, σ

2
j

)
=

K∑
i=1

L∑
j=1

wiw jN
(
µi + µ j, σ

2
i + σ

2
j

)
.

PMF propagation through approximate functional units.
In addition to propagating errors, aFU models also represent
errors introduced by the aFU. Given two cPMF inputs, where a
non-approximate adder would produce a cPMF, an approximate
adder model will produce both a cPMF and an ePMF.

We model each aFU as a combination of its non-approximate
equivalent and filters that separate the output into a correct filter
function cFF and an error filter function eFF. These filters are
convolved with the output of the equivalent non-approximate
adder to obtain the correct and erroneous distributions. Figure 2
illustrates this principle.

For example, the cPMF and ePMF outputs of an approximate
adder are modelled as
cPMFout = cFF∗(cPMFA∗cPMFB)
ePMFout = cFF∗(ePMFA∗cPMFB + cPMFA∗ePMFB +

ePMFA∗ePMFB) + eFF∗(cPMFA∗cPMFB + · · · )

Although in principle cFF and eFF could be represented by
any computable function, we restrict them to weighted sums
of Gaussian distributions and Dirac δ functions; this ensures
that aPMF and ePMF remain Gaussian mixtures and can be
propagated as described above.
Compact representation of PMFs. To represent PMFs

concisely, we observe that most Gaussian components of a
PMF are in the ePMF part of the output and have passed
through multiple eFFs, and so contribute very little to the
overall mixture. In Sec. III, we quantify the accuracy loss due

2



Appears in the Proceedings of the Design, Automation, and Test in Europe Conference and Exhibition (DATE), 2017

cFF

eFF

input cPMF

non-approx.
output cPMF

input cPMF

cPMF

ePMF

Fig. 2. Approximate functional units are modelled as a combination of a
non-approximate equivalent with filter functions cFF and eFF applied to the
output to produce the correct and error components.

to limited representation size, and discard all but six component
Gaussians without noticeable loss of fidelity.

Automatically characterizing approximate components.
Automatically generating aFUs through gate-level synthesis
techniques [20] requires a characterization procedure to estimate
the cFF and eFF filters without human intervention. Character-
ization is complicated by the fact that the errors generated by
the aFU may be dependent on the input value range. The natural
solution here is a lookup table addressed by input distribution
parameters; because in GMEE those distributions can have
many parameters (e.g., five 〈µ, σ,w〉 triples), however, such a
table would have prohibitively many dimensions.
To reduce the number of dimensions, we take advantage

of two insights. Firstly, we note that in practice the rPMF
suffices to capture the dependency, and the table need only be
addressed by the parameters of rPMF (which can be computed
since the non-approximate equivalent unit is known). Secondly,
because rPMF is also a Gaussian mixture and convolution
is distributive, cFF and eFF can be applied separately to
each Gaussian component, and the results combined linearly
to produce the complete output cPMF and ePMF. This means
that the cFF and eFF lookup tables for each component have
only two dimensions and can be addressed by a 〈µ, σ〉 tuple.
The distributivity of convolution over rPMF also allows

approximate module characterization to be performed on single-
Gaussian inputs. To characterize such a module, we:
1) sweep Gaussian parameters µ and σ for each input so

that eventually all combinations are covered for all inputs;
2) repeatedly sample the input distributions, and for each set

of samples compute rPMF and aPMF by simulating the
non-approximate and approximate versions of the module;

3) calculate the filter functions aFF and eFF for each output
〈µ, σ〉 by deconvolution of rPMF with cPMF and ePMF;

4) compute Gaussian mixture representations for aFF and
eFF via Expectation Maximization [22].

This results in an 〈aFF, eFF〉 pair for each reference output
〈µ, σ〉. Since both are represented as Gaussian mixtures, they
require three numbers for each component Gaussian, a total
of fifteen numbers for the 〈aFF, eFF〉 pair. With 1,000 values
for each µ and σ, ∼57MB of storage space are required for
each approximate component — well within the footprint of a
design resource such as an ASIC library.

III. Results and discussion
Methods. We used RTL Verilog to implement circuits with
one and two levels of 32-bit approximate ETAIIM adders with

4 bits per block and three-block carry chains [5, Fig. 3]; we
used RTL-level simulation to obtain the cFF and eFF tables
as well as to obtain true simulation results to evaluate GMEE.
Bluespec RTL-level simulation of a H.264 decoder [24] was
used to obtain realistic input data for the approximate adders.
The remainder of the error models were implemented in Matlab.

As a baseline, we used modified interval arithmetic
(MIA) [15] and a single normal distribution (SAM) [16].
We used the EM algorithm to fit all Gaussians in GMEE.
For test inputs, we selected three single Gaussian distribu-
tions with a mean of 0 and different standard deviations
(σ = 32, 4096, 32768), a best-case scenario for MIA and SAM.
We also included real input distributions observed at the inputs
of two critical-path adders in the interpolation module of the
H.264 decoder to represent real-world behaviour. We sampled
each distribution at least 100,000 times.
GMEE representations survive across propagations. Fig-

ures 3a and 3b show the output of one-adder and two-adder
fragments of the H.264 interpolation pipeline where the adders
were replaced with ETAIIM versions, and the MIA, SAM, and
GMEE estimates for the output distribution. The SAM model
does poorly because σ-only propagation quickly increases σs to
cover errors introduced by approximation: σ increases 16× after
the first adder and 8× more after the second. The MIA model
is a close estimate around 0, but its granularity becomes very
coarse in this example where most values exceed 2,000. Because
GMEE can model multiple distribution peaks, propagation
results closely correspond to actual simulation outputs.
A small number of Gaussians suffices to represent realistic

distributions. Figure 3c shows the Hellinger distance (a measure
of distribution similarity where 0 is identical and 1 signifies
no overlap [25]) of a GMEE model fit to the input distribution
observed at the two H.264 adders, and the computation cost
(in terms of thousands of convolutions) required to propagate
the distributions across one approximate adder. As few as 5 to
7 Gaussians per aPMF bring the Hellinger distance close to 0;
all other diagrams in this paper use a mixture of 5 Gaussians.
GMEE closely tracks different input distributions. Fig-

ure 3d quantifies the fit quality of the three estimates for
different input distributions after propagating through one and
two approximate adders. Even in cases that favour MIA and
SAM (µ = 0, small σ), the Hellinger distance between the
GMEE estimate and the actual simulation output is much lower.
Quality metrics computed from GMEE representations

are better estimates. Figures 3e and 3f show the mean squared
error (MSE) and mean error distance (MED [26]) metrics
estimated from the three estimation techniques, normalized to
the corresponding metric obtained from directly simulating the
approximate circuit. In all cases, the quality metric estimate
derived from GMEE is within a few percent of the simulation-
based value: the maximum MSE deviation is 17% (gmean
2.4%), while the MED never deviates by more than 0.3%.

References
[1] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural

Acceleration for General-Purpose Approximate Programs,” in MICRO,
2012.

3



Appears in the Proceedings of the Design, Automation, and Test in Europe Conference and Exhibition (DATE), 2017

5 10 15 20
0

0.5

1

Hellinger Distance
Complexity (#kops)

(a) (b)

(c) (d)

(e) (f)

one adder level two adder levels one adder level two adder levels

one adder level two adder levels

118× +59% +22% 2770×13× 96×

–80% –97%
–81%

–77%
–46%

110× 2612× 170×20× 1545×40×

–73% –79%
–28%

–64%

-2000 0 2000 4000 6000 8000 10000

×10 -4

0

2

4

6 SIM
GMEE
MIA
SAM

0 5000 10000 15000

×10 -4

0

2

4

6 SIM
GMEE
MIA
SAM

+15%

–17%

number of compoment Gaussians

Hellinger distance

normalized MEDnormalized MSE

output PMF of one approximate adder output PMF of two chained approximate adders

Fig. 3. (a) The output of an approximate adder in the H.264 decoder (grey = simulation results) compared to GMEE (thick red line), MIA (thin blue line), and
SAM (dashed green line) estimates; (b) shows the results and estimates propagated across two approximate adders. (c) illustrates the tradeoff between accuracy
(Hellinger distance) and computation complexity (1000s of convolutions) as the count of Gaussians in GMEE increases. (d) shows the Hellinger distance of the
three error estimates with different input distributions; the left half shows propagation across one approximate adder, and the right half shows propagation across
two. (e) shows the mean squared error, and (f) the mean error distance, of the three estimates, normalized to the MSE and MED obtained from simulation.

[2] J. Miao, A. Gerstlauer, and M. Orshansky, “Approximate Logic Synthesis
Under General Error Magnitude and Frequency Constraints,” in ICCAD,
2013.

[3] M. Kamal, A. Ghasemazar, A. Afzali-Kusha, and M. Pedram, “Improv-
ing efficiency of extensible processors by using approximate custom
instructions,” in DATE, 2014.

[4] J. S. Miguel and N. E. Jerger, “The Anytime Automaton,” in ISCA, 2016.
[5] N. Zhu, W. L. Goh, and K. S. Yeo, “An enhanced low-power high-speed

Adder For Error-Tolerant application,” in ISIC, 2009.
[6] N. Zhu, W. L. Goh, W. Zhang, K. S. Yeo, and Z. H. Kong, “Design of Low-

Power High-Speed Truncation-Error-Tolerant Adder and Its Application
in Digital Signal Processing,” Trans. VLSI, vol. 18, pp. 1225–1229, 2010.

[7] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy,
“IMPACT: IMPrecise adders for low-power approximate computing,” in
ISPLED, 2011.

[8] A. B. Kahng and S. Kang, “Accuracy-configurable adder for approximate
arithmetic designs,” in DAC, 2012.

[9] K. Du, P. Varman, and K. Mohanram, “High performance reliable variable
latency carry select addition,” in DATE, 2012.

[10] J. Huang, J. Lach, and G. Robins, “A Methodology for Energy-quality
Tradeoff Using Imprecise Hardware,” in DAC, 2012.

[11] C. Liu, J. Han, and F. Lombardi, “A low-power, high-performance
approximate multiplier with configurable partial error recovery,” in DATE,
2014.

[12] G. Zervakis, K. Tsoumanis, S. Xydis, N. Axelos, and K. Pekmestzi, “Ap-
proximate Multiplier Architectures Through Partial Product Perforation:
Power-Area Tradeoffs Analysis,” in GLSVLSI, 2015.

[13] J. S. Miguel, J. Albericio, A. Moshovos, and N. E. Jerger, “Doppelgänger:
A cache for approximate computing,” in MICRO, 2015.

[14] C. Li, W. Luo, S. S. Sapatnekar, and J. Hu, “Joint Precision Optimization
and High Level Synthesis for Approximate Computing,” in DAC, 2015.

[15] J. Huang, J. Lach, and G. Robins, “Analytic Error Modeling for Imprecise
Arithmetic Circuits,” in SELSE, 2011.

[16] W. T. J. Chan, A. B. Kahng, S. Kang, R. Kumar, and J. Sartori, “Statistical
analysis and modeling for error composition in approximate computation
circuits,” in ICCD, 2013.

[17] D. Sengupta and S. S. Sapatnekar, “FEMTO: Fast error analysis in
Multipliers through Topological Traversal,” in ICCAD, 2015.

[18] S. Lee, D. Lee, K. Han, E. Shriver, L. K. John, and A. Gerstlauer,
“Statistical quality modeling of approximate hardware,” in ISQED, 2016.

[19] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan, “MACACO:
Modeling and Analysis of Circuits for Approximate Computing,” in
ICCAD, 2011.

[20] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghunathan,
“SALSA: Systematic Logic Synthesis of Approximate Circuits,” in DAC,
2012.

[21] N. E. Day, “Estimating the components of a mixture of normal
distributions,” Biometrika, vol. 56, pp. 463–474, 1969.

[22] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood
from Incomplete Data via the EM Algorithm,” Journal of the Royal
Statistical Society (B), vol. 39, pp. 1–38, 1977.

[23] L. Xu and M. I. Jordan, “On Convergence Properties of the EM Algorithm
for Gaussian Mixtures,” Neural Computation, vol. 8, pp. 129–151, 1996.

[24] K. Fleming, C. C. Lin, N. Dave, Arvind, G. Raghavan, and J. Hicks,
“H.264 Decoder: A Case Study in Multiple Design Points,” in MEM-
OCODE, 2008.

[25] E. Hellinger, “Neue Begründung der Theorie quadratischer Formen von
unendlichvielen Veränderlichen,” Journal für die reine und angewandte
Mathematik, vol. 136, pp. 210–271, 1909.

[26] J. Liang, J. Han, and F. Lombardi, “New Metrics for the Reliability of
Approximate and Probabilistic Adders,” Trans. Computers, vol. 62, pp.
1760–1771, 2013.

4


