
Appears in the Proceedings of the 5th International Symposium on Memory Systems (MEMSYS 2019)

A Unifying Abstraction for Data Structure Splicing
Louis Ye

University of British Columbia
Vancouver, BC, Canada
louisye@ece.ubc.ca

Mieszko Lis
University of British Columbia

Vancouver, BC, Canada
mieszko@ece.ubc.ca

Alexandra Fedorova
University of British Columbia

Vancouver, BC, Canada
sasha@ece.ubc.ca

ABSTRACT
Data structure splicing (DSS) refers to reorganizing data structures
by merging or splitting them, reordering fields, inlining pointers,
etc. DSS has been used, with demonstrated benefits, to improve
spatial locality. When data fields that are accessed together are also
collocated in the address space, the utilization of hardware caches
improves and cache misses decline.

A number of approaches to DSS have been proposed, but each
addressed only one or two splicing optimizations (e.g., only split-
ting or only field reordering) and used an underlying abstraction
that could not be extended to include others. Our work proposes
a single abstraction, called Data Structure Access Graph (D-SAG),
that (a) covers all data-splicing optimizations proposed previously
and (b) unlocks new ones. Having a common abstraction has two
benefits: (1) It enables us to build a single tool that hosts all DSS op-
timizations under one roof, eliminating the need to adopt multiple
tools. (2) It avoids conflicts: e.g., where one tool suggests to split
a data structure in a way that would conflict with another tool’s
suggestion to reorder fields.

Based on the D-SAG abstraction, we build a toolchain that uses
static and dynamic analysis to recommend DSS optimizations to
developers. Using this tool, we identify ten benchmarks from the
SPEC CPU2017 and PARSEC suites that are amenable to DSS, as
well as a workload on RocksDB that stresses its memory table.
Restructuring data structures following the tool’s suggestion im-
proves performance by an average of 11% (geomean) and reduces
cache misses by an average of 28% (geomean) for seven of these
workloads.

CCS CONCEPTS
• Theory of computation → Data structures design and anal-
ysis; • Software and its engineering; • Computer systems or-
ganization;

KEYWORDS
Memory performance, data structure design and analysis, CPU
cache

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7206-0/19/09. . . $15.00
https://doi.org/10.1145/3357526.3357548

ACM Reference Format:
Louis Ye, Mieszko Lis, and Alexandra Fedorova. 2019. A Unifying Ab-
straction for Data Structure Splicing. In Proceedings of the International
Symposium on Memory Systems (MEMSYS ’19), September 30-October 3,
2019, Washington, DC, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3357526.3357548

1 INTRODUCTION
Hardware caches rely on two kinds of intuition about locality:
temporal locality (i.e., that recently accessed data is likely to be
accessed in the near future), and spatial locality (i.e., that data
placed together in the address space are also likely to be accessed
together in time).

To take advantage of spatial locality, they fetch data from mem-
ory in batches (“cache lines” of usually 64–128 bytes). If the program
has a high degree of spatial locality, hardware caches are operating
efficiently: once they fetch (or pre-fetch) a cache line, all or most
of the line will be used by subsequent accesses. Efficient caching
lowers the memory access latency and reduces memory bandwidth
requirements, and results in better performance.

Unfortunately, spatial locality in modern applications is very
low [14]. Figure 1 shows that the cache line utilization of different
benchmarks — i.e., the number of bytes accessed out of the 64 bytes
brought into the cache — is only about 40% of the cache line on
average. The appetites of modern datacentre workloads already

Figure 1: Bytes used in a cache line before eviction (64-byte
cache lines, 8MB LLC, 16-way set associative), measured in
an enhanced version of the DineroIV [9] cache simulator. In
most applications, very little of a cache line is used before
the line is evicted.

1

https://doi.org/10.1145/3357526.3357548
https://doi.org/10.1145/3357526.3357548
https://doi.org/10.1145/3357526.3357548

Appears in the Proceedings of the 5th International Symposium on Memory Systems (MEMSYS 2019)

exceed the capacities of feasible caches [11], and low utilization
only exacerbates this problem.

Spatial locality can be improved either by reorganizing the cache
structure (in hardware) or by reorganizing the data layout (in soft-
ware). While hardware solutions have been proposed (e.g., adaptive
cache line granularity [e.g., 14] or sub-cache-line filtering [e.g., 22]),
they have so far not found implementation in processors from the
major commercial vendors. In this work, therefore, we assume fixed
hardware and focus on restructuring the application’s data layout.

Writing programs with good spatial locality is hard. Data struc-
tures are often naturally organized along primarily semantic lines,
and developing intuition about co-temporal accesses to single fields
in a large structure is rarely straightforward. To help programmers
with this challenge, prior work proposed tools that recommend
(or automatically make) changes in data structure or class defini-
tions. Examples include class splitting — when “hot” or frequently
access fields are segregated from “cold” or infrequently accessed
fields [7, 13, 16]; field reordering — when fields that are accessed
together are co-located in the data structure [7, 10]; and pointer
inlining — when a pointer in a structure is replaced with the data it
refers to avoid locality-breaking indirection [8].

We observe that all these techniques, which we call data structure
splicing (DSS), are conceptually similar. They rely on reorganizing
the definitions of classes or data structures guided by observations
of how individual fields are accessed. Yet, there isn’t a common,
unifying abstraction that enables reasoning about these optimiza-
tions. Lack of a common abstraction has several downsides. First,
different optimizations were embodied in disparate tools; to apply
all of them, the developer may need to use, for example, one tool
for class splitting, another one for field merging and yet another
one for pointer inlining. Second, disparate tools may produce con-
flicting recommendations: for example, one tool may suggest to
reorder fields in a way that conflicts with a class-splitting sugges-
tion produced by another tool. Third, other conceptually similar
optimizations, such as class merging and field migration, as we
show in this paper, were overlooked in prior work.

Ourmain contribution is the unifying abstraction for data
structure splicing. The abstraction is the Data Structure Access
Graph (D-SAG). D-SAG is a graph where each field is represented
by a node, and fields that are accessed together in time are con-
nected by edges. Edges have weights, with higher weights signi-
fying more contemporaneous accesses of a pair of fields. Figure 2
shows an abridged example of the LRU Handle data structure from
RocksDB [3] and the corresponding D-SAG.

Our second contribution is a set of algorithms that ana-
lyze a D-SAG and recommend changes to data structures that
improve spatial locality. These algorithms use graph clustering
and produce recommendations to the programmer. Figure 3 shows
the output of our algorithm for the RocksDB example in Figure 2:
the recommendation is to collocate specific fields (found to be
frequently accessed together) in the same class. Applying these
changes to RocksDB reduces the runtime of a workload that stresses
its memory table by 20%.

As a proof of concept, we developed a toolchain that automat-
ically generates D-SAG from C and C++ code (using static and
dynamic analysis) and recommends changes to data structures or
classes. Our toolchain is based on the DINAMITE [19] LLVM pass,

Figure 2: A snippet of a data structure in RocksDB and the
corresponding D-SAG. Thicker edges represent more fre-
quent co-temporal accesses.

Figure 3: Recommended data structure definitions produced
by our toolchain for the code in Figure 2. MR is the LLCmiss
ratio, while MRP is the percentage contributed by this field
to the overall miss ratio.

and works for C/C++ programs that can be compiled with LLVM 3.5.
The analysis is primarily useful for memory-bound programs that
use complex classes or data structures (as opposed to arrays of prim-
itives, which are usually already optimized spatial locality). Based
on these criteria, we were able to analyze ten memory-bound bench-
marks from SPEC CPU2017, PARSEC, and RocksDB’s db_bench,
and improve performance by an average of 11% (geomean) and
reduced cache misses by an average of 28% (geomean) for seven of
these workloads.

The rest of the paper is organized as follows: Section 2 describes
related work. Section 3 presents the D-SAG abstraction and the
algorithms for its analysis. Section 4 describes the implementation.
Section 5 presents the evaluation. Section 6 discusses limitations
and future work. Section 7 concludes.

2 RELATEDWORK
Prior studies that automatically identified DSS optimizations are
summarized in Table 1. The focus of these studies was to identify

2

Appears in the Proceedings of the 5th International Symposium on Memory Systems (MEMSYS 2019)

one or two specific optimizations, while our goal is to design a
common abstraction for many DSS techniques.

Table 1: Data Structure Splicing Optimizations Comparison

Optimization Prior works Our work
Class splitting Yes [7] [13] [16] [24] [23] Yes
Pointer-field inlining Yes [8] Yes
Fields reordering Yes [7] [16] [10] Yes
Class merging No Yes
Fields migrating No Yes

In “Cache-Conscious Structure Definition” [7], Chilimbi et al. focus
on two optimizations: class splitting and field reordering. For class
splitting, they use the abstraction of hot/cold fields: frequently ac-
cessed ‘hot’ fields are isolated in a separate class from infrequently
accessed ‘cold’ fields. This abstraction does not enable DSS opti-
mizations other than class splitting and may not improve cache line
utilization if the co-located hot fields are not accessed contempora-
neously.

Chilimbi’s field-reordering optimization does rely on computing
affinity between fields, which is very similar to our definition of
affinity (see Section 3.2). However, their analysis is done on fields
within a single class, so cross-class optimizations are not possible.
In contrast, our D-SAG abstraction detects field affinities within a
class as well as across classes. As a result, D-SAG is poised to detect
class merging and field migration opportunities, whereas previously
used abstractions were not (see Table 1).

Hundt et al. [13] modify a compiler to perform structure splitting
and peeling by finding dead fields. Lack of runtime information
may prevent idenitfying fields that are accessed together and those
that generate many cache misses. That aside, Hundt’s optimizations
were performed on individual data structures only.

Lin et al. proposed a compiler framework that integrates data
structure splitting and field reordering with array flattening [16].
For class splitting, they use a similar abstraction as Chilimbi’s cache-
conscious data structures: they split the class with fields whose
access count is higher than the average. For field reordering, they
proposed a simple heuristic to sort the fields according to their
access count so that hot fields are grouped. (A similar strategy was
used by Eimouri et al. [10].) The limitations of their class splitting
approach is similar to that of Chilimbi’s work. The limitations of
their field reordering strategy are that cross-class optimizations are
not possible, and grouping fields without considering their affinity
may yield poor performance.

Dolby et al. use pointer field inlining to solve performance issues
caused by software module isolation [8]. They analyze memory
traces to inline pointer fields of objects that have “parent-child” or
“one-to-one pointer field” relationship. This approach is effective,
but does not produce optimizations besides pointer field inlining.

Zhong et al. [24] analyze “reference affinity” with LRU stack
distance between objects, which is similar to our definition of affin-
ity. They focus on trying out different thresholds of distance to
identify opportunities for array regrouping and structure splitting.
The analysis does not cover fields reordering or class merging in
general.

Zhao et al. [23] also examine structure splitting, or array splitting
in particular. They try different strategies for splitting, i.e., max-
imum splitting or splitting each field, frequency-based splitting,
affinity-based splitting. Their approach does not cover optimiza-
tions other than class/structure splitting.

Our D-SAG abstraction is inspired byMiucin’s access graphs [20].
In Miucin’s access graphs, nodes represented individual memory
addresses, and the graphs themselves were used to guide dynamic
allocation of data structure instances. In D-SAG, however, nodes
represent data structure fields, and the graphs are used to reorganize
data structures in the application’s source code.

3 ABSTRACTION AND ALGORITHMS
3.1 Requirements for a Common Abstraction
To understand the requirements for an effective common abstrac-
tion for DSS optimizations, let us consider two examples: the RocksDB
code fragment from Figure 2 and the canneal code fragment in Fig-
ure 4.

The RocksDB code fragment (Figure 2) shows a data structure
that accounts for most of the cache misses (∼85%) in the RocksDB
workload that stresses its memory table (see Section 5). The graph
in the figure shows that the fields next_hash and hash are accessed
both frequently (= both are included in the graph) and together in
time (= they are connected by a thick edge). However, in thememory
layout that corresponds to this definition, they are separated by
six other fields, which are not accessed contemporaneously. Worse
yet, they are likely to span across more than one cache line: for
example, even if LRUHandle were allocated on a 64-byte cache line
boundary, next_hash would be in the first line and hash would
span the first and second lines. Similarly, fields next, key_length,
and deleter are accessed together but separated by other fields;
while they span only 48 bytes, LRUHandle allocation in the RocksDB
code does not respect cache line boundaries, so in reality the three
fields are likely to be allocated across two cache lines. To improve
cache line usage, therefore, we would want to place next_hash and
hash, as well as, separately, next, key_length, and deleter, close
in memory. Observe that reasoning about this example requires
knowing (a) which of a structure’s fields are accessed often, and
(b) which fields are accessed together.

The data structures in Figure 4 (from canneal in PARSEC [5],
where they account for ∼65% of all cache misses) demonstrate that
this is not quite enough. The original code frequently accesses
fields fanin, fanout, and present_loc from class netlist_elem
together in time, while the field item_name is accessed infrequently.
Moreover, accesses to present_loc dereference it and access its
elements x and y. To improve cache line usage, then, we would want
to separate item_name from fanin, fanout, inline the x and y sub-
fields of present_loc, and place all four close in the address space.
To reach this conclusion, we needed not only the intra-structure
access frequencies as in the RocksDB example above, but also the
ability to track these across different related structures.

In other words, a common abstraction must (a) identify fre-
quently and infrequently accessed fields, and (b) capture contempo-
raneous accesses, both within and across data structure boundaries.

3

Appears in the Proceedings of the 5th International Symposium on Memory Systems (MEMSYS 2019)

As the basis for this abstraction, we first define the term access affin-
ity, to which we have been loosely referring as accesses occurring
“together in time”.

Figure 4: A snippet of a data structure in PARSEC canneal
and the corresponding D-SAG.

Figure 5: Recommended data structure definitions produced
by our tool for the code in Figure 4.

3.2 Access Affinity
To capture which fields are accessed together — and how closely to-
gether in time —we leverage Mattson’s notion of stack distance [17].
Given accesses to two fields u and v in a memory access trace, stack
distance is the number of accesses to unique data elements between
the accesses to u and v; for example, in a trace ‘uababv’, the stack
distance between u and v is two. Intuitively, the lower the stack
distance, the more closely in time two fields are accessed.

Next, we observe that, for the purposes of optimizing spatial
locality, only short stack distances matter. This is because two
fields with a long stack distance may not result in an improved
cache hit rate even if they are placed next to each other, as the
cache line may well have been evicted between the two accesses.

We therefore define an affinity event as an occurrence, in a mem-
ory access trace, of a stack distance below a threshold t. In other
words, if a pair of fields u and v were accessed with fewer than t
other unique elements accessed in between, we detect an affinity
event. We then define access affinity between a pair of fields as the
number of affinity events between the two fields in the memory
trace. (We discuss threshold selection in Section 4.3.) The pair of
fields do not have to belong to the same object.

The concept of access affinity allows us to reason about a pair of
fields; in the next section, we combine access affinity information
for all data structures in the program in one abstraction that allows
us to co-locate data that are frequently accessed together.

3.3 D-SAG
To reason about the relationships among different fields from differ-
ent data structures, we construct the Data Structure Access Graph
(D-SAG).

A D-SAG is as an undirected graph where each node represents a
field in a data structure or a class. Each node includes a counter that
indicates how many times the corresponding field was accessed.
Edges carry weights, equal to the access affinities between the
relevant pairs of fields. For example, an edge 𝑢 − 𝑣 with a weight
of 20 indicates that fields 𝑢 and 𝑣 were accessed within a threshold
stack distance on twenty separate occasions. Because access counts
are in general input-dependent, a D-SAG is specific to both the
application (data structure definitions) and the memory access trace
(access affinities).1

Figure 7 shows the D-SAG constructed from the memory access
trace of the example code in Figure 6. (Such graphs are produced
automatically by our tools.) Thicker edges represent stronger affin-
ity.

Figure 6: The data structure and the code accessing it for the
D-SAG in Figure 7.

1We explain how we obtain memory access traces in Section 4.

4

Appears in the Proceedings of the 5th International Symposium on Memory Systems (MEMSYS 2019)

Figure 7: The D-SAG (G0) for the code in Fig 6 under an ex-
ample workload. Nodes represent data structure fields, with
the colour representing access frequency (red = “hot”, blue =
“cold”). Edgeweights represent access affinity between a pair
of fields: the thicker the edge, the more often the fields are
accessed together. Dashed outlines represent identify the
data structure to which the outlined fields belong.

3.4 D-SAG Analysis
To demonstrate the usefulness of the D-SAG abstraction for op-
timizing spatial locality, we demonstrate how it can be used to
express three different optimizations that restructure class fields
to optimize for spatial locality: class splitting and merging, field
inlining, and field reordering. We organize the optimizations as
a three-stage pipeline to show how they can be applied together
using the common D-SAG abstraction.

Figure 8: G1, Stage 1, transformed from G0 in Figure 7. This
graph is manually crafted to help explain.

3.4.1 Stage 1: Class Splitting and Merging. Splitting and merg-
ing transforms a set of classes into new classes where (a) fields
frequently accessed together are merged in the same class, and
(b) fields that are rarely accessed together are split into different
classes. The first aspect means that accessing one field will also
bring into the cache fields that are likely to be accessed soon (i.e.,
spatial locality is improved); the second aspect means that fields
that are not likely to be accessed soon are not brought into the
cache (i.e., cache wastage is reduced).

To effect the splitting/merging optimization, we want to trans-
form the D-SAG into several clusters, where each cluster consists
of nodes that are connected by heavy edges. This is similar to the
community detection problem, where the goal is to cluster the
graph in such a way that the whole graph would have the best
modularity score [21]. A high modularity score implies dense con-
nections between the nodes within clusters but sparse connections
between nodes in different clusters, which corresponds to our goal
of optimizing spatial locality by placing frequently co-accessed data
close by but rarely co-accessed data far away.

In our implementation, we use the multi-level community de-
tection graph-clustering algorithm [6] to perform clustering: we
empirically observed that this algorithm produces a high-quality
clustering with little tuning (e.g., we do not need to specify the num-
ber of clusters) and good performance (faster than other candidates,
e.g., k-means, spectral clustering, etc.).

Formally, this stage takes an input D-SAG G0(V, E, C0), where
• V is the set of the nodes in the D-SAG,
• E is the set of weighted edges in the D-SAG, and
• C0 is the set of clusters where each cluster ci represents a
data structure in the original code,

and produces an output graph G1(V, E, C0, C1), where
• C1 is a set of clusters produced by the graph-clustering al-
gorithm, with each cluster cj includes a set of fields that are
frequently accessed together.

For example, this optimization transforms G0 in Figure 7 is trans-
formed into G1 in Figure 8. The class Large is split into class
Large.1 and class Large.2 because the fields large_b and large_d
are cold and do not have affinity to other fields of the same class
(large_a, large_d, and large_e). Class Foo and class Bar are
merged because of strong affinity, as indicated by the heavy edges.

3.4.2 Stage 2: Field Inlining. The field inlining optimization merges
substructure fields referenced via a pointer into the enclosing struc-
ture if they are frequently accessed together with other enclosing
structure fields. (We saw an example of this in the canneal code
snippet in Figure 4, where the netlist_elem class contained a
pointer to a location_t subclass with fields x and y.) Field inlining
improves cache hit rates because the inlined subfields are more
likely to be in the same cache line than if they were in a separate
structure (spatial locality). This optimization also has a secondary
effect of improving instruction-level parallelism, as the subfield
accesses are no longer dependent on the data read from the enclos-
ing structure and can be issued to the cache/MSHRs even if the
enclosing structure access is a cache miss.

To effect field inlining, we start with the output of Stage 1, that is
the graph G1(V, E, C0, C1) where C0 clusters fields according to the

5

Appears in the Proceedings of the 5th International Symposium on Memory Systems (MEMSYS 2019)

Figure 9: G2, Stage 2, transformed from G1 in Figure 8. This
graph is manually crafted to help explain.

original class hierarchy and C1 clusters fields according to access
affinity. The C1 clustering already brings together fields from the
enclosing structure and the relevant fields from the substructure;
all that remains, then, is to remove the substructure pointer if all
fields were inlined.

∀ vj ∈ V and ∀ ci ∈ C1, vj is considered for removal if
• vj ∈ ci,
• vj is a pointer type, and
• all fields of the original class pointed by vj were merged into
cluster ci at Stage 1.

The inlining stage produces a graph G2(V, E, C0, C2) where
• C2 is the clustering C1 minus the pointer fields to classes
with all fields inlined.

For example, the algorithm at this stage transforms G1 in Figure 8
into G2 in Figure 9: foo_bar_p is removed because it is of pointer
type Bar* and the class Bar was fully merged into class Foo in
Stage 1.

3.4.3 Stage 3: Field Reordering. Although Stage 1 ensures that a
group of fields with high affinity is grouped together in the same
data structure, it does not necessarily result in good spatial locality,
as the fields with the highest affinity may not be placed next to
each other. This matters especially if allocation is done without
regard to cache line boundaries (as is the case with the RocksDB
data structure in Figure 2), as the structure might begin anywhere
in the cache line and two fields may end up in different lines even
if they are within, say, 64 bytes of each other.

To decrease the impact of such splits on the cache miss rate, we
organize fields within each data structure to ensure that fields with
the highest access affinities are immediately next to each other in
the memory layout. This ensures that even if structures are split
across cache lines at random points, fields that are accessed together
most frequently are likely to end up in the same cache line.

Stage 3 begins with the output from Stage 2: a graph G2(V, E, C
0, C2) where C2 clusters fields by affinity and inlines high-affinity
substructures. The objective is to produce a graph G3(V, E, C0, C3)
where

Figure 10: G3, Stage 3, transformed fromG2 in Figure 9. This
graph can be generated by our toolchain.

• ∀ ci ∈ C3, fields in ci are ordered to place fields with high
affinity close together.

This goal is similar to the problem known as the weighted minimum
linear arrangement (MinLA), where given a weighted graph G(V,
E), |V|=n, one must find a one-to-one function 𝜑 : V → {1, ..., n}
that minimizes

∑
𝑖 𝑗 ∈𝑉 |𝜑 (𝑖) − 𝜑 (𝑗) | ∗ 𝑒 ij. MinLA is known to be

NP-hard [12], and does not scale to the large number of fields in
modern applications.

To achieve the goal efficiently, we developed an order-preserving
variant of hierarchical clustering. We repeatedly group pairs of
nodes (fields) inside each cluster in a descending order of edge
weights (affinities) until all nodes are grouped into one in each
cluster. Every time a pair of nodes is grouped, this pair is merged
and treated as one node, with the edge weights from the merged
nodes to any outside node combined via addition. When merging
two nodes, we preserve their relative order in the original data
structure; the resulting merged node inherits the order of the top
component node that appears earlier in the structure. If the pair of
nodes come from different data structures in the original code, then
the one with more accesses is ordered first in the merged structure,
based on the intuition that more frequently used fields will gain
more benefit from being brought in with other data. Finally, the
merged node’s access frequency is the sum of access frequencies of
its sub nodes.

Figure 10 shows an example of field reordering. In cluster Foo+Bar,
node foo_head and node foo_tail are considered first because
they are connected by the heaviest edge. Nodes foo_head and
foo_tail aremerged into one node, with foo_head before foo_tail
according to the original field order. Next, bar_a is placed after
foo_tail because foo_tail–bar_a) is the second heaviest edge,
and the access frequency of bar_a is less than that of the previously
merged node foo_head+foo_tail. The process continues for the
remaining nodes, with bar_b grouped after bar_a, and bar_c after
bar_b. Finally, foo_mid is grouped after bar_c due to its original
order being before the merged node that begins with foo_head.

Figure 11 shows the final output generated by our toolchain
(Section 4) after running the three-analysis pipeline on the code
from Figure 6.

6

Appears in the Proceedings of the 5th International Symposium on Memory Systems (MEMSYS 2019)

Figure 11: Data structure definition suggestions: final output
after Stage 3. ‘Size’ is the size of the field or the class, MR is
the LLC miss ratio generated by this field, MRP is the nor-
malized miss ratio percentage – the fraction contributed by
this field to the overall miss ratio.

The optimizations are generated in different stages, but they will
not conflict with each other, because the later stages only refine
the output of the earlier stages (e.g., stages 2 and 3 cannot re-form
clusters);

4 IMPLEMENTATION
In this section we describe our toolchain that embodies the abstrac-
tion and algorithms we propose in this paper. The toolchain takes
an original program as input and suggests DSS optimizations as
output, just like in the examples in Figures 3 and 5.

The entire workflow is shown in Figure 12. Phase 1 involves
profiling the program with Linux perf [1] (a) to determine whether
it is memory-bound and (b) to identify the functions responsible
for most of the cache misses.

Phase 2 extracts data structure definitions from the binary and
instrumenting the binary to produce the memory access trace.

After running the instrumented binary and recording the mem-
ory trace, Phase 3 builds the D-SAG, analyses it and produces
data structure splicing sugggestions.

Phase 4 simulates the proposed suggestions by reorganizing
the original memory trace as if the data structures were modified
according to the suggestions of Phase 3 . The re-arranged trace is
fed through the Dinero cache simulator [9] to see if the proposed
changes would bear fruit.

Next, we describe each phase in more detail.

4.1 Phase 1: Identifying memory-bound
programs and functions

We profile the program with Linux perf [1] to determine if it is
memory-bound and to identify the functions responsible for many

Figure 12: The pipeline of the proposed toolchain. The blue
rectangles are the components of the pipeline, the green
trapezoids are the outputs from the pointed components.

cache misses. Knowing the culprits allows us to instrument only
those functions and not the entire program; as a result, the memory
trace is shorter and the analysis phase completes faster.

We measure the L1, L2, and LLC misses and filter those programs
whose L1 miss ratio below 3% and LLC miss ratio is below 1%.
Functions with L1 miss ratio above 0.5% or LLC miss ratio above
0.2% are chosen for instrumentation.

4.2 Phase 2: Memory trace collection and static
analysis

We obtain data structure definitions contained in the DWARF [18]
binary. The program needs to be compiled with ‘-g‘ to make that
information available. Data structure definitions will be used in
Phase 3 , during D-SAG construction.

We compile the program with LLVM clang; during compilation,
we also run the DINAMITE [19] instrumentation pass. DINAMITE
instruments memory accesses in functions selected during Phase
1 and the memory allocation routines. Combined with the data
structure definitions, this information will allow us to determine
when an object is allocated, what fields it contains, and when those
fields are accessed2.

2We infer the type of the object from the pointer casting instruction following an
allocation.

7

Appears in the Proceedings of the 5th International Symposium on Memory Systems (MEMSYS 2019)

4.3 Phase 3: D-SAG and Analysis
To construct the D-SAG, we parse the memory access trace. We
set up a shadow heap to detect newly allocated objects, identify
accesses to their fields and detect affinity events (Section 3.2).

For each entry in the memory access trace:

• if it is an allocation entry, we allocate the corresponding
object(s) on the shadow heap and record its type;

• if it is a memory access to a dynamically allocated object,
we find the corresponding object in the shadow heap and
determine the field that was accessed by mapping the field’s
offset to the DWARF data structure definition.

If the access is not to a dynamically allocated object, we simply
record it into the stash of recently accessed addresses, which we
use to detect affinity events.

If the access is to a field in a dynamically allocated object, we
create a new node in D-SAG, if this the first time we encounter an
access to that field. We then examine the stash of recently accessed
memory addresses to detect affinity events (fields accessed within
the stack distance threshold from each other – see Section 3.2). If an
affinity event between two fields is detected, we will either create
an edge with the weight of one between the corresponding nodes,
or increment the weight if the edge already exists.

We tried different stack distance thresholds for the applications
we evaluated and found the value of ten to work best. It is small
enough to not create too many edges and large enough to detect
affinity between fields accessed contemporaneously. Tuning the
threshold to the individual program and hardware was beyond the
scope of this work.

We treat primitive type allocations (e.g., int, double, etc.) as a
single-field class. For example, if an array of int is allocated at line
7 of a source file 𝐴, and another array of int is allocated at line 8 of
same source file 𝐴, we will create two new classes: class-A-l7 and
class-A-l8. If the members of these arrays have a high affinity to
each other, D-SAGwill suggestmerging the single-element “classes”,
which is essentially merging the two arrays so that their members
are interleaved.

Upon processing the memory trace, we have the corresponding
D-SAG, which we then analyze using the three-step process de-
scribed in Section 3.4. The output of this phase are text files with
DSS recommendations, like the ones shown in Figures 3 and 5.

4.4 Phase 4: Simulating proposed changes
To gauge the potential impact of the DSS optimizations recom-
mended by Phase 3 , we rearrange the original memory trace
to reflect the new locations of fields after the recommended code
changes. We feed the new trace through the DineroIV cache simu-
lator [9], which we modified to also measure cache line utilization.
As we show in Section 5, the miss rates produced by the simulator
track those measured on real hardware when we apply the changes
to the original programs. This means that we can use the output of
the simulator to decide if the estimated reduction in the miss rates
and the improvement in cache line utilization justify investing the
effort into changing the actual code.

5 EVALUATION
5.1 Benchmarks
We evaluated our toolchain on C/C++ benchmarks from the SPEC
CPU 2017 [4] and PARSEC [5] suites, as well as a modified version
of the read random workload from RocksDB’s db_bench [3] that
stresses its memory table3.

From the SPEC and PARSEC applications, we excluded: four
as not compatible with LLVM-clang 3.5 (required by DINAMITE);
three where heavy use of template types limited the static anal-
ysis the current version of our toolchain could handle; and one
application where a custom memory allocator prevented our tools
from tracking the allocated objects and collecting the traces. This
is a limitation of our implementation rather than of our techniques
— that is, a more sophisticated version of our tools could address
these challenges. For the time being, however, we excluded these
applications from our analysis.

This left us with 21 applications listed in Table 2. All of themwere
analyzed with our tools using the workflow shown in Figure 12.
Eleven of these benchmarks had no opportunities for optimizations:
they either already had near-perfect cacheline utilization (Group 2),
a low cache miss rate (Group 3), or used a single array of primitive
types or simple classes instead of complex classes or data structures
(Group 4). The remaining applications in Group 1 went through
the entire analysis pipeline; our tools suggested optimizations for
all of them except 520.omnetpp_r, 525.x264_r, and 557.xz_r.

Table 2: Benchmarks Categories

Categories Benchmarks
Optimizable
1. Sophisticated class rocksdb, canneal,
and memory-bounded streamcluster, fluidanimate,

ferret, 505.mcf_r,
511.povray_r, 520.omnetpp_r,
557.xz_r, 525.x264_r

No optimization opportunities
2. Cacheline usage dedup, bodytrack, blacksholes,
near 100% freqmine, swaptions, 508.namd_r

3. Not memory-bounded 544.nab_r, 541.leela_r,
500.perlbench_r

4. Simple Class Definition 519.lbm_r, 531.deepsjeng_r

5.2 Methodology
We evaluated the benchmarks on a machine with an Intel® CoreTM
i5-7600K four-core CPU, with 32KB L1 instruction and 32KB L1
data caches per core, a 256KB L2 cache per core, and a unified 6MB
LLC. The size of the cache line is 64 bytes.

We ran our tool pipeline on the benchmarks in Group 1 and
manually applied the data structure changes suggested by our tools.
3We isolate the function that accesses the memory table, which accounts for the
highest fraction of CPU utilization and LLC misses: 15% and 20%, respectively; we
optimize/measure only that portion of the benchmark.

8

Appears in the Proceedings of the 5th International Symposium on Memory Systems (MEMSYS 2019)

Figure 13: Runtime of the optimized version normalized to
the original.

Figure 14: Cachemisses of the optimized versionnormalized
to the original.

E.g., if the tool suggests merging classes that make up multiple
arrays, we replace these arrays with one array whose member is the
merged-class object in the code; if the tool suggests splitting a class,
we split all the pointers that point to this class. If the tool suggests a
large number of changes, we only pick the ones that affect hot data
structures (data structures account for at least 2% of LLC misses). In
two cases, 505.mcf_r and 511.povray_r, the reorganization of data
structures reverberated with the overwhelming number of changes
that had to be made across the code (over 100 code locations in
each benchmark). To reduce the manual effort, we isolated from
these benchmarks only the functions that dominated the runtime
(<90% CPU time).

5.3 Performance
We report the runtime and the caches miss rate (measured using
perf) before and after optimizations. We also report the cache line
utilization and the cache misses measured via simulation (as part
of the pipeline in Figure 12).

Figure 15: Relevant RocksDB code before and after optimiza-
tions.

Figure 13 shows the runtime normalized to the original and Fig-
ure 14 shows the cache misses. The runtime improved for seven out
of ten benchmarks, by up to 30% and by 11% on average (geometric
mean). The three benchmarks that did not improve are the ones
where our tools did not produce optimization suggestions. The
reason is that the data structures were already organized according
to access affinity.

For those benchmarks that did improve, the runtime improve-
ment can be explained by the reduction in cache misses. For fluidan-
imate the number of L1 misses slightly increased, but the reduction
in L2 and LLC misses provided a hefty compensation. Since the
cost of an L1 miss (that hits in the L2 cache) is on the order of ten
CPU cycles, while the cost of an L2 miss (that hits in the LLC) is
on the order of 40 [2], this trade-off has a net positive effect on
performance.

The number of executed instructions (not shown) remained un-
changed in all applications except for RocksDB, where it increased
by 4% when we applied the optimizations. That is because the logic
of accessing the LRU table has changed (Figure 15 shows the orig-
inal and the modified code). This price was worth paying, since
the resulting improvements in spatial locality reduced the runtime
by 20%.

Figure 16: Simulated cache misses measured on rearranged
traces, normalized to those measured on the original trace.

To get a further glimpse into the root cause of the observed
performance improvements, we used an enhanced version of the
DineroIV [9] cache simulator. We re-arranged the memory ad-
dresses in the trace according to the suggestions produced by our

9

Appears in the Proceedings of the 5th International Symposium on Memory Systems (MEMSYS 2019)

Figure 17: Cache line utilization for the original trace and
the trace re-arranged accoring to optimization suggestions.

tools, isolating the effects of the improved memory layout from any
secondary effects that the code changes might produce. Figure 16
shows the simulated miss rates obtained on the rearranged trace.
The simulated miss rates improve very similarly to those measured
on real hardware, suggesting that the effects we observed can be
explained by a better memory layout.

Figure 17 reveals the driving force for these improvements. The
new memory layout increased the utilization of cache lines for all
benchmarks that experienced improved performance.

Data structure splicing is particularly effective for applications
that allocate a large number of class objects consecutively (e.g., a
large array). This is the case for canneal, streamcluster, and 505.mcf_r,
where our optimizations make the memory layout more compact.
To further illustrate this effect, we study how our optimizations
improved the performance of canneal.

5.4 Case Study - canneal

Figure 18: Access pattern of canneal before optimization

Figure 18 shows the original data access pattern in canneal. It
repeatedly and randomly

• picks an element from a large array of class A, and
• reads the index and pointer fields in the class A object to
access a class B object and two class C objects.

Essentially, there are four random memory accesses in each itera-
tion: one to a class A object, one to a class B object, and one each
to two class C objects. The combined footprint of all the objects
of classes A, B, and C is much larger that the LLC, which means
that the four random accesses result in four cache misses most of
the time. The cache line utilization of objects in class A, B, C are
56%, 12.5% and 25% respectively, which gives an average cache line
utilization of 30%.

Figure 19: Access pattern of canneal after optimizations.

Since the class B object is always accessed through the index
field of a class A object, our toolchain suggests to move the fields
in class B to class A, which is shown in Figure 5. Figure 19 shows
the access pattern after applying the optimizations. The new access
pattern gives an average cache line utilization of 36%.

Because of the merge between classes A and B, in each iteration
the number of random memory accesses drops from four to three,
making it possible in theory to reduce the number of cache misses
by 25%, and, indeed, the actual reduction in the cache miss rate and
the runtime is very close to 25%.

6 DISCUSSION AND FUTUREWORK
6.1 Automating recommendations
Our tools recommend optimizations to a developer as opposed to
applying them to the source code automatically. This has both ad-
vantages and limitations. The advantage is that the bar for tool
adoption is low: a developer does not have to commit to an exper-
imental compiler, and the resulting code readability (and ease of
debugging) will not suffer, because the changes are applied by the
developer. The downside is that sometimes the amount of manual
changes may be overwhelming (as was the case for two applications
in our study). On the other hand, automatic source code transfor-
mations are not always easy to apply, because some optimizations
(e.g. splitting inherited classes in C++) are hard to apply without
human decision. Understanding how to best combine the simplicity
of hand-applied changes and the efficiency of automatic transfor-
mations is a possible avenue for future work.

When doing automatic transformations, we need to consider
memory safety. For instance, when migrating a field from one class
to another, which essentially increases the size of the class, we
want to make sure that the behavior is still correct and does not
raise issues like buffer overflow. Additionally, field migration or
reordering may cause problems, because in languages like C/C++
an application may access the field via its offset, using pointer arith-
metic. Analyzing the access pattern for safety using the memory
access trace is not sufficient, because the access pattern may change
if the input changes.

10

Appears in the Proceedings of the 5th International Symposium on Memory Systems (MEMSYS 2019)

Since C/C++ are not memory-safe, we do not believe that recom-
mendations produced by our tools can be applied automatically in
the general case. We believe that a semi-automation tool, like the
one we proposed, is a more practical approach.

6.2 Algorithm Validity and Correctness
It is known that the problem of optimizing the cache hit rate (and
hence the problem of data structure layout) is NP-hard [12, 15].
Our algorithm uses a greedy, heuristic approach. While we cannot
prove or claim optimality, the advantage is simplicity and speed of
the algorithm (D-SAG construction and analysis took between 30
minutes and an hour on our benchmarks).

In the current implementation, we run two kinds of graph anal-
ysis on the same trace at once: graph clustering and inter-cluster
analysis. We would like to understand whether repeating all or
some these analyses several times after the data structures were
reorganized according to the eariler output of the algorithm would
yield better results.

6.3 Threats to Effectiveness
We used a pointer-type inference method to decide the type of an
allocated object. Though this works for most C and C++ programs,
generic pointer casting can still invalidate this mechanism, e.g.,
an allocated object that referred to by a pointer that is later cast
to another type might be miss-labeled in our approach. A more
sophisticated type inference method (e.g. combining static analysis
with dynamic information) could mitigate this issue.

Merging classes with significantly different numbers of allocated
objects sometimes might not make sense, e.g., the D-SAG might
detect high affinity between the field of a singleton class and the
field of class that is member of a large array. We can address this
issue by adding a constraint in Stage 1 where edges between fields
of different classes would be removed if the classes greatly differ in
the number of allocated objects.

7 CONCLUSION
In this paper, we present a novel method to produce diversified
types of data structure splicing optimizations under one single ab-
straction. We introduce the D-SAG (Data Structure Access Graph),
which can reveal the access pattern and access affinity among fields
of data structures. Based on D-SAG, we present a multi-stage algo-
rithm that can analyze the graph and produce comprehensive types
of data structure splicing optimizations suggestions. We measure
the preliminary version of our D-SAG-based toolchain on a diverse
set of workloads. On applications that are amenable to our opti-
mizations (i.e., do not already have full cache line utilization), our
technique reduces cache misses by an average of 28% (geomean)
and improves performance by an average of 11% (geomean).

REFERENCES
[1] 2019. perf: Linux profiling with performance counters. https://perf.wiki.kernel.

org/
[2] 2019. Performance Analysis Guide for Intel® CoreTM i7 Processor and Intel®

XeonTM 5500 processors. https://software.intel.com/sites/products/collateral/
hpc/vtune/performance_analysis_guide.pdf

[3] 2019. RocksDB | A persistent key-value store. https://rocksdb.org/
[4] 2019. Standard Performance Evaluation Corporation. https://www.spec.org/

[5] Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D. Dissertation.
Princeton University.

[6] Vincent Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre.
2008. Fast Unfolding of Communities in Large Networks. Journal of Statisti-
cal Mechanics Theory and Experiment 2008 (04 2008). https://doi.org/10.1088/
1742-5468/2008/10/P10008

[7] Trishul M. Chilimbi, Bob Davidson, and James R. Larus. 1999. Cache-conscious
Structure Definition. In Proceedings of the ACM SIGPLAN 1999 Conference on
Programming Language Design and Implementation (PLDI ’99). ACM, New York,
NY, USA, 13–24. https://doi.org/10.1145/301618.301635

[8] Julian Dolby and Andrew Chien. 2000. An Automatic Object Inlining Optimiza-
tion and Its Evaluation. In Proceedings of the ACM SIGPLAN 2000 Conference on
Programming Language Design and Implementation (PLDI ’00). ACM, New York,
NY, USA, 345–357. https://doi.org/10.1145/349299.349344

[9] Jan Edler and Mark D. Hill. 1998. Dinero IV: trace-driven uniprocessor cache
simulator.

[10] Taees Eimouri, Kenneth B. Kent, Aleksandar Micic, and Karl Taylor. 2016. Using
Field Access Frequency to Optimize Layout of Objects in the JVM. In Proceedings
of the 31st Annual ACM Symposium on Applied Computing (SAC ’16). ACM, New
York, NY, USA, 1815–1818. https://doi.org/10.1145/2851613.2851942

[11] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad
Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia
Ailamaki, and Babak Falsafi. 2012. Clearing the Clouds: A Study of Emerging
Scale-out Workloads on Modern Hardware. In Proceedings of the Seventeenth
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS XVII). ACM, New York, NY, USA, 37–48. https:
//doi.org/10.1145/2150976.2150982

[12] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,
USA.

[13] Robert Hundt, Sandya Mannarswamy, and Dhruva Chakrabarti. 2006. Practical
Structure Layout Optimization and Advice. In Proceedings of the International
Symposium on Code Generation and Optimization (CGO ’06). IEEE Computer
Society, Washington, DC, USA, 233–244. https://doi.org/10.1109/CGO.2006.29

[14] S. Kumar, H. Zhao, A. Shriraman, E. Matthews, S. Dwarkadas, and L. Shannon.
2012. Amoeba-Cache: Adaptive Blocks for Eliminating Waste in the Memory
Hierarchy. In 2012 45th Annual IEEE/ACM International Symposium on Microar-
chitecture. 376–388. https://doi.org/10.1109/MICRO.2012.42

[15] Rahman Lavaee. 2016. The Hardness of Data Packing. In Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’16). ACM, New York, NY, USA, 232–242. https://doi.org/10.
1145/2837614.2837669

[16] Jin Lin and Pen-Chung Yew. 2010. A Compiler Framework for General Memory
Layout Optimizations Targeting Structures. In Proceedings of the 2010 Workshop
on Interaction Between Compilers and Computer Architecture (INTERACT-14). ACM,
New York, NY, USA, Article 5, 8 pages. https://doi.org/10.1145/1739025.1739033

[17] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. 1970. Evaluation Techniques
for Storage Hierarchies. IBM Syst. J. 9, 2 (June 1970), 78–117. https://doi.org/10.
1147/sj.92.0078

[18] Michael J. Eager. 2012. Introduction to the DWARF Debugging Format. http:
//www.dwarfstd.org/doc/Debugging%20using%20DWARF-2012.pdf

[19] Svetozar Miucin, Conor Brady, and Alexandra Fedorova. 2016. End-to-end Mem-
ory Behavior Profiling with DINAMITE. In Proceedings of the 2016 24th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE 2016).
ACM, New York, NY, USA, 1042–1046. https://doi.org/10.1145/2950290.2983941

[20] Svetozar Miucin and Alexandra Fedorova. 2018. Data-driven Spatial Locality
(Memsys 2018). ACM, New York, NY, USA.

[21] M. E. J. Newman. 2006. Modularity and community structure
in networks. Proceedings of the National Academy of Sciences
103, 23 (2006), 8577–8582. https://doi.org/10.1073/pnas.0601602103
arXiv:https://www.pnas.org/content/103/23/8577.full.pdf

[22] Moinuddin K Qureshi, M Aater Suleman, and Yale N Patt. 2007. Line distilla-
tion: Increasing cache capacity by filtering unused words in cache lines. In 2007
IEEE 13th International Symposium on High Performance Computer Architecture
(HPCA).

[23] Peng Zhao, Shimin Cui, Yaoqing Gao, Raúl Silvera, and José Amaral. 2005.
Forma : A framework for safe automatic array reshaping. ACM Transactions
on Programming Languages and Systems (TOPLAS) 30 (01 2005), 2. https:
//doi.org/10.1145/1290520.1290522

[24] Yutao Zhong, Maksim Orlovich, Xipeng Shen, and Chen Ding. 2004. Array
Regrouping and Structure Splitting Using Whole-program Reference Affinity.
In Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language
Design and Implementation (PLDI ’04). ACM, New York, NY, USA, 255–266. https:
//doi.org/10.1145/996841.996872

11

https://perf.wiki.kernel.org/
https://perf.wiki.kernel.org/
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://rocksdb.org/
https://www.spec.org/
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1145/301618.301635
https://doi.org/10.1145/349299.349344
https://doi.org/10.1145/2851613.2851942
https://doi.org/10.1145/2150976.2150982
https://doi.org/10.1145/2150976.2150982
https://doi.org/10.1109/CGO.2006.29
https://doi.org/10.1109/MICRO.2012.42
https://doi.org/10.1145/2837614.2837669
https://doi.org/10.1145/2837614.2837669
https://doi.org/10.1145/1739025.1739033
https://doi.org/10.1147/sj.92.0078
https://doi.org/10.1147/sj.92.0078
http://www.dwarfstd.org/doc/Debugging%20using%20DWARF-2012.pdf
http://www.dwarfstd.org/doc/Debugging%20using%20DWARF-2012.pdf
https://doi.org/10.1145/2950290.2983941
https://doi.org/10.1073/pnas.0601602103
http://arxiv.org/abs/https://www.pnas.org/content/103/23/8577.full.pdf
https://doi.org/10.1145/1290520.1290522
https://doi.org/10.1145/1290520.1290522
https://doi.org/10.1145/996841.996872
https://doi.org/10.1145/996841.996872

	Abstract
	1 Introduction
	2 Related Work
	3 Abstraction and Algorithms
	3.1 Requirements for a Common Abstraction
	3.2 Access Affinity
	3.3 D-SAG
	3.4 D-SAG Analysis

	4 Implementation
	4.1 Phase 1: Identifying memory-bound programs and functions
	4.2 Phase 2: Memory trace collection and static analysis
	4.3 Phase 3: D-SAG and Analysis
	4.4 Phase 4: Simulating proposed changes

	5 Evaluation
	5.1 Benchmarks
	5.2 Methodology
	5.3 Performance
	5.4 Case Study - canneal

	6 Discussion and Future Work
	6.1 Automating recommendations
	6.2 Algorithm Validity and Correctness
	6.3 Threats to Effectiveness

	7 Conclusion
	References

