
Appears in the Proceedings of the 35 th ACM International Conference on Supercomputing (ICS 2021)

Accelerating DNNs Inference with Predictive Layer Fusion
MohammadHossein Olyaiy

mohamadol@ece.ubc.ca
University of British Columbia

Christopher Ng
chris.ng@ece.ubc.ca

University of British Columbia

Mieszko Lis
mieszko@ece.ubc.ca

University of British Columbia

ABSTRACT

Many modern convolutional neural neworks (CNNs) rely on bot-
tleneck block structures where the activation tensor is mapped
between higher dimensions using an intermediate low dimension,
and convolved with depthwise feature filters rather than multi-
channel filters. Because most of the computation lies in computing
the large dimensional tensors, however, such networks cannot be
scaled without significant computation costs.

In this paper, we show how fusing the layers inside these blocks
can dramatically reduce the multiplication count (by 6–20×) at the
cost of extra additions. ReLU nonlinearities are predicted dynam-
ically, and only the activations that survive ReLU contribute to
directly compute the output of the block. We also propose FusioNet,
a CNN architecture optimized for fusion, as well as Archon, a novel
accelerator design with a dataflow optimized for fused networks.

When FusioNet is executed on the proposed accelerator, it yields
up to 5.8× faster inference compared to compact networks executed
on a dense DNN accelerator, and 2.1 × faster inference compared
to the same networks when pruned and executed on a sparse DNN
accelerator.

CCS CONCEPTS

• Computer systems organization→ Neural networks.

KEYWORDS

Neural networks, hardware accelerators, hardware-software code-
sign, ReLU prediction, bottleneck blocks, edge computing
ACM Reference Format:

MohammadHossein Olyaiy, Christopher Ng, and Mieszko Lis. 2021. Accel-
erating DNNs Inference with Predictive Layer Fusion. In 2021 International
Conference on Supercomputing (ICS ’21), June 14–17, 2021, Virtual Event, USA.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3447818.3460378

1 INTRODUCTION

Modern mobile convolutional neural networks (CNNs) [16, 17, 32,
37, 42] rely on variants of “bottleneck” blocks to decrease the com-
putational cost. Instead of conventional convolutions, these blocks
employ depthwise convolutions to extract features and pointwise
convolutions to distribute information across multiple channels.
Typically, each bottleneck block consists of a pointwise layer that
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICS ’21, June 14–17, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8335-6/21/06. . .$15.00
https://doi.org/10.1145/3447818.3460378

Figure 1: MobileNet v2 block structure. The residual connec-

tion between the input and output of the block has been

omitted for clarity.

maps from few to many channels, a depthwise layer that detects
features in each channel, and another pointwise layer that again
significantly reduces the channel count. For example, in Figure 1,
layer (a) expands the feature map from 64 to 384 channels, layer (b)
detects features in each of the 384 channels separately, and layer
(c) reduces the tensor back to 64 channels.

Together, the three stages of the bottleneck take 3.3 million
multiply-accumulate (MAC) operations. Observe, however, that the
overall operation maps a 64-channel tensor to another 64-channel
tensor, despite the expansion to 384 channels as an intermediate
step. Were it somehow possible to perform this operation directly
as a linear composition of the three layers in the bottleneck, the
number of MACs could be decreased, in this case to 30% less than
the original value in the running example.

However, this straightforward linear composition is of course
not possible because of the rectified linear unit (ReLU) nonlineari-
ties [29] between the layers.

In this paper, we propose a layer composition technique that
overcomes this challenge. Our approach relies on the observation
that each activation after the final bottleneck layer is a linear com-
bination of its components from all layers, with some components
ignored (i.e., equal to zero) because of the ReLU filter. We therefore
dynamically predict the ReLU outcome (zero or pass) during infer-
ence, and reconstruct the effective activation by adding together
the components that would have survived the ReLU mask.

Figure 2: Number of MAC operations in bottleneck layers

from three CNNs, when executed normally as three lay-

ers (left) vs. as one fused layer (right); pw=pointwise layers;

dw=depthwise layers.

1

https://orcid.org/1234-5678-9012
https://doi.org/10.1145/3447818.3460378
https://doi.org/10.1145/3447818.3460378

Appears in the Proceedings of the 35 th ACM International Conference on Supercomputing (ICS 2021)

Figure 2 quantifies the potential of this technique in terms of the
number of million MACs needed to process a bottleneck block from
three representative CNNs, both when all three layers are executed
separately, and when the bottleneck is fused into a single layer
with ideal ReLU predictions. The potential is significant — an order
of magnitude — and promising even if savings will decrease with
realistic ReLU prediction and effective activation reconstruction.

Recomputing the final activations this way saves many multipli-
cation operations. However, it presents three new challenges: (a) the
ReLU activation filters must be predicted dynamically; (b) the final
weight for each feature map must be dynamically reconstituted by
adding many sub-components, but only those that survived their
ReLU activations; and (c) layer fusion significantly increases the
model size as combinations of weights are multiplied out.

To overcome these challenges, we propose an end-to-end co-
design approach that combines changes in the deep neural network
(DNN) architecture as well as a novel hardware architecture suitable
for executing fused DNNs. Specifically, we make the following
contributions:

First, we observe that ReLU acts as a mask filter applied to an oth-
erwise linear composition. Thus, if the ReLU pass/zero mask were
known statically, the output feature map (ofmap) that results from
multiple layer applications — such as that in a bottleneck block —
could be treated as one combined layer, where the effective weights
are different combinations of the weights from each layer combined
depending on which activations survive the ReLU mask. Critically,
because weights are known, the multiplication can be done offline,
leaving only addition during actual inference (cf. Section 3). This
saves a significant number of multiply operations (cf. Figure 2), at
the cost of increasing the number of additions required.

Second, we develop a DNN hardware accelerator architecture
that (a) predicts the ReLU mask accurately but at a fraction of the
computation cost, and (b) uses the predicted mask to filter and
dynamically accumulate the pre-computed fused weights.

Third, to address the intractable growth of fused weights, we
observe that fusing previously pruned layers significantly increases
the sparsity in fused weights. We use this observation to dramati-
cally reduce the number of fused weights.

Fourth, we analyze different flavours of bottleneck blocks in
state-of-the-art CNNs and create a new flavour that better takes
advantage of layer fusion.

To the best of our knowledge, this is the first work to analyze true
layer fusion (as opposed to simply using on-chip storage to pass
activations through a pipeline of layers [4, 11], or merging batch
normalization or ReLU operations with preceding convolutions).
Our experiments show that, when maintaining similar accuracy,
our techniques yield up to 5.8 × inference speedup on compact
networks executed on a dense DNN accelerator, and 2.1 × speedup
when these networks are pruned and executed on a sparse DNN
accelerator.

2 BACKGROUND

In this section, we review how bottlenecks are used in modern
networks, and then sketch the architecture of existing accelerators.

2.1 Bottleneck Blocks

Many recent works [e.g., 16, 17, 32, 37, 42] employ variants of bottle-
neck blocks to design more computationally-efficient CNNs. These
blocks combine two ideas: (a) factoring a convolution layer into
pointwise and depthwise layers, and (b) reducing the computation
by turning the pointwise layer into a bottleneck structure.

Depthwise (DW) convolutions. Traditional CNNs rely on
what we refer to as full convolutions: the kernel that produces
each output activation has a dimension that corresponds to all
input channels, and is convolved with all input channels at once.
In contrast, the kernel in a depthwise convolution (illustrated as
(b) in Figure 1) lacks this input channel dimension, and is applied
separately to each input channel. This takes many fewer MACs: for
example, a 3 × 3 regular convolution on an 82 × 384 input feature
map (384 being the number of input channels) needs 32 × 82 × 3842

MACs to produce 384 output channels, while a depthwise convolu-
tion only needs 32 × 82 × 384 MACs to produce an ofmap with the
same dimensions, 384× fewer MACs than the regular convolution.

Pointwise (PW) convolutions. Performing depthwise convo-
lutions, however, does not allow features to consider information
from different input channels. To address this, pointwise 1 × 1
convolution layers ((a) and (c) in Figure 1) are used together with
the depthwise layers to allow cross-layer information exchange.
In effect, depthwise layers learn to extract channel-wise features,
while pointwise layers learn to gather information from features in
different channels and combine them.

Bottleneck block structure. Pointwise convolutions are still
costly, as they gather information from a large number of channels
and produce high-dimensional tensors. To optimize this compu-
tation, two separate pointwise layers can work in a bottleneck
fashion; one of the pointwise layers (PW2 in Figure 1) maps the
high-dimensional input to a low-dimensional tensor and the other
PW layer (PW1 in Figure 1) maps this back to a high-dimensional
tensor. We refer to the number of the channels in expanded block
as mid ch, and the ratio of the high dimension to the low dimension
used in a bottleneck structure as 𝑇 . For example, applying a point-
wise convolution on an ifmap of size 8× 8 with 384 channels to pro-
duce an ofmap of the same dimensions needs 82 × 3842 = 9, 437, 184
operations. However, if we use a bottleneck structure with 𝑇 = 6,
we only need 82 × 384 × 64 × 2 = 3, 145, 728 operations, 3× fewer
than in the original case.

Example. Figure 1 shows how DW and PW convolutions are
employed in the MobileNet v2 [32] building blocks. The bottleneck
block transforms an 82 × 64 input activation tensor into another
82 × 64 activation tensor as the output. The processing occurs in
three distinct steps:

• First, the input activations tensor is projected into an 8× 8×
384 intermediate tensor (int-A) by applying 384 pointwise
convolutions, corresponding to an expansion factor of𝑇 = 6;
this is followed by batch normalization [18] and ReLU as
usual. This is shown in Figure 1a.

• Next, a depthwise 3 × 3 convolution is applied to each of
the 384 channels separately, again followed by batch normal-
ization and ReLU layers. this results in another 8 × 8 × 384
intermediate tensor (int-B). This is shown in Figure 1b.

2

Appears in the Proceedings of the 35 th ACM International Conference on Supercomputing (ICS 2021)

Figure 3: A typical 2D-PE-array DNN accelerator: each PE has

local buffers for various data types, as well as a MAC unit. A

global buffer (GLB) acts as an intermediate level of storage

between the PEs and DRAM to exploit data reuse.

• Finally, the number of channels is reduced from 384 back
to 64 by applying 64 pointwise kernels with dimensions
1 × 1 × 384. This is shown in Figure 1c.

Because the feature detection in the bottleneck layers is depthwise,
the MAC count scales only linearly with the number of intermediate
channels (384), instead of almost quadratically in a full convolution.
Furthermore, the bottleneck structure reduces the cost of combin-
ing inter-channel information: in the example from Figure 1, this
translates into 82 × 384× (64+ 9+ 64) = 3, 366, 912 MAC operations,
many fewer than the 82 × 9 × 3842 = 84, 934, 656 operations that
would have been needed for a full convolution.

2.2 CNN Accelerator Architecture

Specialized accelerators have been proposed to exploit the deter-
ministic execution of CNNs and reduce their operational cost [9,
10, 19, 31, 40]. Figure 3 shows a typical 2D-array CNN accelerator
and the associated processing element (PE) microarchitecture. A
large on-chip global buffer (GLB) implemented in SRAM, together
with smaller per-PE register files, allows for temporal reuse of data
fetched from off-chip DRAM, amortizing the cost of DRAM accesses.
DRAM and GLB reads can also be reused spatially by broadcasting
them to different PEs simultaneously. Inside each PE, a MAC unit
performs the computation required for the convolution operation,
while register files allow for intra-PE temporal reuse.

In this paper, we use this accelerator architecture as a baseline,
and modify it to efficiently support fused CNNs.

3 PREDICTIVE LAYER FUSION

Fusing two convolutional layers would be trivial if there were
no non-linearity between them: the result would then be a linear
composition of the two convolution operations. In reality, however,
ReLU nonlinearities that separate the layers make this difficult.

Our key insight in resolving this conundrum is to separate the
ReLU nonlinearity from the otherwise linear convolutional layers.
We treat the ReLU layer as a bitmask layer where a cleared bit
means that the corresponding activation will be zeroed while a set
bit means that the activation will survive. If this bitmask is known
ahead of time, the fused convolution is a matter of computing the
combined weights that would result from a linear layer composition
and applying them to the incoming activations.

Figure 4: Two consecutive convolution and ReLU layers. The

output of second convolution in the first layer (shown by or-

ange) is negative and replacedwith zero after passing through

ReLU.

Figure 5: Fusion of aMobileNet v2 bottleneck block. Different

channels of PW1 are distinguished by fill (e.g., solid, gradi-

ent etc.), different PW2 filters are distinguished by border

style, and different𝑚𝑖𝑑 𝑐ℎ are distinguished by colour. First,

the PW1 (𝑤𝑝𝑤1) DW layers (𝑤𝑑𝑤) are fused (a), and then the

PW2 layer (𝑤𝑝𝑤2) is fused with the result (b) to form the

fused weights.

Below, we first describe how layers would be fused in the absence
of ReLU. We then imagine that the ReLU bitmask is known through
an oracle, and describe the layer fusion under these conditions.
Finally, we describe how the oracle can be approximated by an
on-line predictor.

3.1 Layer fusion without ReLU

Figure 4 illustrates two 2 × 1 convolutional layers with ReLU layer
following each of them. In this section, we ignore the ReLU non-
linearities and treat the layers as if they were linear. The activation
value in the fmap[3] coordinate (1, 1) is a function of the activa-
tions at (1, 1) and (2, 1) in the fmap[2] , and those are functions of
the activations at (1, 1), (2, 1), and (3, 1) in fmap[1] . If we ignore
ReLU, the output of the second layer can be computed directly from
fmap[1] :

3

Appears in the Proceedings of the 35 th ACM International Conference on Supercomputing (ICS 2021)

fmap [3] [1, 1] = fmap [1] [1, 1] ×
(
𝑤 [1] [1] ×𝑤 [2] [1]

)
+ fmap [1] [2, 1] ×

(
𝑤 [1] [2] ×𝑤 [2] [1] +𝑤 [1] [1] ×𝑤 [2] [2]

)
+ fmap [1] [3, 1] ×

(
𝑤 [1] [2] ×𝑤 [2] [2]

) (1)

Since the weights are known prior to inference, all of the multipli-
cations and additions that involve only weights in Equation (1) can
be done offline; during inference, each activation is only multiplied
by the resulting reconstructed weight. With fusion, the middle layer
is effectively skipped, reducing the number of MACs required.

Figure 5 shows how the weights are fused for the more complex
and general case of a MobileNet v2 bottleneck block. Fusing bot-
tlenecks results in skipping the multiplications between the larger
mid ch-channel activation tensors. The layers are combined in two
steps: (a) fusing the PW1 layer with the DW layer, and (b) fusing
the result with the PW2 layer.

In step (a), each of the PW1 kernel filters — there are mid ch =

384 in total — is fused with the corresponding channel of the DW
kernel. Since the filters are of different sizes (1×1 versus 3×3), each
weight in the 1 × 1 × 64 PW1 kernel is multiplied with each of the
nine weights of the corresponding DW kernel. Overall, this yields
a fused layer with 3 × 3 × 64 × 384 filters which are the products of
those from the PW1 and DW layers.

Then, in step (b), we fuse these resulting kernels with the 64
final PW2 kernels, each of which has 1 × 1 × 384 weights. Each
1 × 1 filter is multiplied by 3 × 3 × 64 weights of the corresponding
channel produced in step (a). Doing this for all the 2 kernels yields
a 3 × 3 × 64 × 384 × 64 fused weights tensor.

Using fused weights, the final output fmap activations can be
calculated as:

ofmap[𝑥,𝑦, 𝑛] =
3∑︁

kx=1

3∑︁
ky=1

𝑀∑︁
𝑚=1

(ifmap[𝑥 + kx, 𝑦 + ky,𝑚]

×
𝑚𝑖𝑑 𝑐ℎ∑︁
i=1

fused weights[kx, ky,𝑚, i, 𝑛])

(2)

where, in our running example, there are 𝑛 = 2 bottleneck input
channels, mid ch = 384 intermediate channels, and 𝑚 = 2 bottle-
neck output channels.

The inner summation over mid ch in Equation (2) is where the
weights that need to be applied to the input feature map elements
are reconstructed from combinations of fused weights elements.
The multiplicative and additive factors of inference-time batch nor-
malization layers can be similarly folded into the fused weights.

Observe that this now requires no multiplications, only additions
— that is, we have drastically reduced the number of multiplications
by converting them to additions. This is the key source of efficiency
in our proposal.

However, the fused weights tensor has many more parameters
than the total number of original weights for the bottleneck block
— 3 × 3 × 64 × 384 × 64 = 14, 155, 776 elements, much larger than
1×1×64×384+3×3×384+1×1×384×64 = 52, 608 original weights.
We show how to overcome this new challenge in Section 4.2.

3.2 ReLU as a mask filter

Let us now consider how to fuse layers change if ReLU remains,
but the effect of ReLU on each activation — in other words, the sign
of each activation — is known through an oracle.

In the 2 × 1 convolution example from Figure 4, suppose output
of the second (orange) convolution applied to fmap[0] is negative
— denoted by a negative sign in the figure — and therefore replaced
with a zero by ReLU. Correspondingly, in Equation (1), 𝑤 [2] [2] be-
comes zero, which also zeroes any fused weights terms that involve
𝑤 [2] [2]:

fmap [3] [1, 1] = fmap [1] [1, 1] × (𝑤 [1] [1] ×𝑤 [2] [1])︸ ︷︷ ︸
fused weights [1] [1]

+ fmap [1] [2, 1] × (𝑤 [1] [2] ×𝑤 [2] [1]︸ ︷︷ ︸
fused weights [2] [1]

+𝑤 [1] [1] ×����: 0
𝑤 [2] [2]︸ ︷︷ ︸

fused weights [1] [2]

)

+ fmap [1] [3, 1] × (𝑤 [1] [2] ×����: 0
𝑤 [2] [2]︸ ︷︷ ︸

fused weights [2] [2]

)

(3)

In effect, ReLU can be thought of as a bit-mask filter that decides
which pre-computed fused weights contribute to the final weight
applied to each input feature map activation. For example, in a
bottleneck block of MobileNet v2, where the output of the ReLU
layer is 82 × 384 = 24, 576 activations, the corresponding ReLU
mask will have 24,576 bits.

As each bottleneck block has two ReLU layers, there will be
two ReLU mask layers, which we will call 𝑅1 and 𝑅2. Rewriting
Equation (2) to use 𝑅1 and 𝑅2, we obtain a general equation for a
fused bottleneck block:

ofmap[𝑥,𝑦, 𝑛] =
3∑︁

kx=1

3∑︁
ky=1

𝑀∑︁
𝑚=1

(ifmap[𝑥 + kx, 𝑦 + ky,𝑚]

×
𝑚𝑖𝑑 𝑐ℎ∑︁
i=1

𝑅1[𝑥 + kx, 𝑦 + ky, i] ∧ 𝑅2[𝑥,𝑦, i]

× fused weights[kx, ky,𝑚, i, 𝑛])

(4)

Because 𝑅1 and 𝑅2 entries are bits, their product can be replaced
with a logical and operation; pre-computed fused weights that
survive the 𝑅1 ∧ 𝑅2 filter are then added together to produce the
output feature map.

In the next section, we tackle the remaining task of determining
the 𝑅1 and 𝑅2 masks.

3.3 Predicting the ReLU mask

To predict the mask bits at each position in the 𝑅1 and 𝑅2 ReLU
filters, recall that this bit will be zero if and only if the corresponding
pre-ReLU activation in the original (unfused) network would have
been zero. In other words, each bit in 𝑅1 and 𝑅2 is the logical not
of the sign bit of its activation in the original model.

Several prior works [7, 35, 36] predict the sign bit by using bit-
serial arithmetic and processing the most significant bits first; this
partial sum can then be used to decide whether the rest of the com-
putation is necessary, since negative outputs will be zeroed by ReLU.

4

Appears in the Proceedings of the 35 th ACM International Conference on Supercomputing (ICS 2021)

(a) layer wise accuracy (b) overall accuracy

Figure 6: The occuracy of our ReLU predictor.

While this can save computation time for single convolutions, it is
not suitable for our use case because we need the mask reconstruct
weights before any MAC operations are performed.

Our strategy for predicting 𝑅1 and 𝑅2 relies on the observation
that only the sign bit needs to be predicted. We evaluate the original
network approximately, with only enough precision that the sign
bit can be reliably predicted (specifically, we use ternary {−1, 0, +1}
weights and 4-bit activations). The prediction step — evaluating
the original model with ternary weights — turns all but one MAC
operations into additions. At the required 4-bit width, this is far
faster (and energetically cheaper) than evaluating the same layers
at 16-bit precision.

Specifically, our predictor is based on TWN [23], which approxi-
mates the original weights as

𝑊 ≈ 𝛼 ×𝑊 𝑡 (5)

where𝑊 𝑡 represents the ternary weights and 𝛼 is a scalar chosen
off-line to minimize the ℓ2 distance between the original weights
and their approximations. In our case, we only need the sign of the
final activation and not the magnitude, so 𝛼 can be dropped for
the depthwise layer prediction, while it can be merged with batch
normalization for the pointwise layer.

Figure 6a shows how accurate the ReLU predictor is for 𝑅1 and
𝑅2. The predictor for 𝑅2 is always slightly less accurate than for 𝑅1,
since it adds its own prediction error to the error carried through
from 𝑅1. Nevertheless, all the predictors are more than 80% accurate.

It turns out that this level of accuracy is usually enough for the
fused network to maintain the accuracy of the original unfused
model. Figure 6b shows the CIFAR10 [21] classification accuracy for
a variant of MobileNet v2 (see Table 1 for details) when inference is
executed on the fused network (Equation (4)) and the ReLU masks
are predicted using the TWN predictor. Initially, accuracy drops by
about 2.5%, but after retraining the original accuracy is recovered.

4 FUSION-OPTIMIZED CNNS

Fusing bottleneck blocks significantly changes the tradeoff land-
scape of the original networks. On the one hand, because fusion
removes the intermediate activations in each bottleneck, the num-
ber of intermediate channels (mid ch) — and therefore the number
of features detected — can be significantly increased in the pre-fused
network. On the other hand, because fused blocks pre-compute
weights for many combinations of the original network’s weights,
they need to store more weights than unfused networks.

Table 1: Bottleneck blocks of original vs. fusion-optimized

MobileNet v2 for CIFAR10. Each block is repeated n times,

all with the same number of output channels. Stride is ap-

plied only in the first block of each sequence. Note the larger

mid ch and smaller input and output channels in the modi-

fied version.

input 𝑚𝑖𝑑 𝑐ℎ 𝑁 𝑛 stride MACs (− / + fusion)
322 × 16 144 24 2 1 13M / 9M
322 × 24 192 32 3 1 38M / 26M
162 × 32 384 64 4 2 50M / 33M
82 × 64 576 96 3 1 76M / 56M
82 × 96 960 160 3 2 61M / 38M
82 × 160 960 320 1 1 30M / 29M

(a) original MobileNet v2

input 𝑚𝑖𝑑 𝑐ℎ 𝑁 𝑛 stride MACs (− / + fusion)
322 × 16 864 24 3 1 144M / 14M
322 × 24 864 32 4 2 79M / 9M
162 × 32 864 40 6 2 34M / 5M
82 × 40 864 80 1 1 7M / 2M

(b) modified MobileNet v2

In this section, we show how to adjust the DNN model archi-
tecture take advantage of the opportunities — and mitigate the
challenges — presented by fusion.

4.1 Network architecture adaptation for fusion

In this section, we develop FusioNet, a bottleneck-based CNN opti-
mized for fused bottlenecks. FusioNet outperforms MobileNet v2,
Shufflenet, and Mnasnet in accuracy while requiring less computa-
tion after fusion.

Rebalancing input/output and intermediate channels.

First, we consider rebalancing bottleneck blocks by increasing the
number of intermediate channels and decreasing the number of
channels at the bottleneck input and output — i.e., increasingmid ch
while decreasing 𝑀 and 𝑁 in Figure 1 — while keeping the overall
number of MACs in the original unfused network roughly constant.

For example, to process a block with 32 input and output chan-
nels, 192 mid ch and 82 fmaps, we need 82 × 192 × (32 + 9 + 32) =
897, 024 MACs (without fusion), and if we change the size of in-
put and output channels to 16 while increasing mid ch to 384,
82 × 384 × (16 + 9 + 16) = 1, 007, 616 MACs are needed to pro-
cess the block (also without fusion). With fusion, however, the
modified block needs only a quarter of the MACs needed by the
original block, at the expense of more additions.

Table 1 shows how this technique can be applied to Mobile-
Net v2 [32] bottleneck blocks. To keep the overall number of op-
erations similar, the modified CNN has 14 blocks and 264M MACs
in total (unfused), while the original CNN has 16 blocks and 246M
MACs (unfused). Our evaluation (Section 6.2) shows that this trans-
formation retains the accuracy of the original network.

FusioNet. To design FusioNet, we combine this approach with
group convolutions and shuffle units as employed by ShuffleNet [42].
We use 2,368 and 3,456 intermediate channels (see Table 2), but the

5

Appears in the Proceedings of the 35 th ACM International Conference on Supercomputing (ICS 2021)

Figure 7: FusioNet block structure. Residual connection be-

tween input and output of the block is not shown. Group

convolution is performed with g groups.

Table 2: FusioNet: Each block is repeated 𝑛 times, all with the

same number of output channels. The stride is applied only

in the first block of each sequence. Blocks are based on the

structure shown in Figure 7 and g is the number of groups.

input 𝑚𝑖𝑑 𝑐ℎ 𝑁 𝑛 stride g MACs (− / + fusion)
322 × 32 2368 32 3 1 4 182M / 7M
162 × 32 2368 64 4 2 4 109M / 8M
82 × 64 3456 96 8 2 4 103M / 10M
82 × 96 3456 160 1 1 4 16M / 2M

Figure 8: Sparsity of fused bottleneck blocks for the CNN in

Table 1.

pointwise convolutions at each step are performed in four groups:
that is, blocks with mid ch = 3456 can be thought of as four sep-
arate blocks with mid ch/4 channels, produced by separate PW1
layers that operate on 1/4 of the input channels. As with ShuffleNet,
the channels are shuffled after the PW2 layer.

Table 2 details the resulting network architecture. While the
number of unfused MACs is higher than the networks in Section 4.1,
most of this is on the intermediate blocks; as a result, FusioNet
actually becomes more efficient once bottleneck fusion is applied.
Our evaluation (Section 6.3) shows that FusioNet can be executed
much more efficiently than other CNNs with similar accuracy.

4.2 Pruning

Because fusing bottleneck layers requires computing fused weights
that correspond to combinations of the original weights (see Sec-
tion 3), at first sight it would appear that the total number of weights
that must be stored and retrieved from off-chip memory would grow
dramatically.

To ameliorate this problem, we first apply weight pruning [14, 15]
to create sparsity in the original (unfused) weights. With retraining,
this does not sacrifice accuracy [14, 15], and sparse models can be
executed efficiently on a range of accelerator designs [3, 12, 13, 31].

Next, we observe that sparsity is dramatically higher for fused
weights than for unfused weights. This is because a zero-valued
weight can make multiple non-zero weights in the next layer inef-
fectual when multiplied with them during layer fusion. For example,

if pointwise layers of a bottleneck are 80% sparse and the depth-
wise layer is 70% sparse, the fused weight tensor for that block can
achieve up to 1 − (0.2 × 0.2 × 0.3) = 98.8% sparsity, depending on
the exact distribution of zero weights in the unfused weight tensor.

Figure 8 shows the actual sparsity for the fused weights of Mo-
bileNet v2 in Table 1 when pruning is applied at 80% for the point-
wise layers and 70% for the depthwise layers: the fused weights are
on average 98.6% sparse.

Throughout the rest of the paper, we apply pruning to both the
fused models and the unfused baseline models. In the next section,
we describe an accelerator architecture that efficiently reconstructs
the per-activation effective weights at runtime from the ultra-sparse
fused weights tensor.

5 ARCHON ARCHITECTURE

Unfortunately, fused-layer inference is not efficient on existing DNN
inference accelerators (e.g., Figure 3) because it uses many more
adders than multipliers — additions are needed both to compute
the effective activation weights from the fused weights that survive
the ReLU mask (Section 3.1), and replace multiplications in the
ternary-weight prediction phase (Section 3.3). Another challenge is
the extreme (> 98%) sparsity present in the fused weights structure
(Section 4.2), together with the need to ensure sufficient throughput
from the adders that reconstitute weights before applying them to
activations. Finally, operations occur at different bitwidths: 4 bits
during the prediction phase, and more (in our case 16) bits during
the fused inference phase.

Below, we develop Archon, an accelerator architecture suitable
for fusion. Like many prior accelerators [9, 19], Archon is a 2D
array of processing elements (PEs); however, Archon PEs have
significant microarchitectural changes to address the challenges
outlined above.

5.1 Data Reuse and Dataflow

Convolutional Weight Reuse. Inference with fused layers pre-
serves convolutional weight reuse across inputs, as the fused weights
tensor does not depend on the input fmap 𝑋 or 𝑌 dimensions. The
weights are reused as in regular convolutions — that is, we can reuse
a 3× 3×mid ch weight block (for a 3× 3 filter), rather than reusing
a single weight (in pointwise layers) or a 3 × 3 filter (in depthwise
layers) only within each channel. During the ReLU prediction phase,
reuse is the same as with the original bottlenecks.

ReLU Mask Reuse. In addition to weights, the ReLU prediction
masks can also be reused. Since the ReLU bitmasks 𝑅1 and 𝑅2 are
independent of the input and output channels 𝑀 and 𝑁 , they can
be fetched once and reused spatially across multiple PEs that work
on different input and output channels. The fetched masks 𝑅1 and
𝑅2 can also be reused temporally within each PE if the PE works on
different bottleneck-input and bottleneck-output channels across
different cycles. Finally, the 𝑅2 bitmask is reused across the filter
size (e.g., 3 × 3) from the preceding convolutional layer.

Dataflow. To maximize reuse opportunities, Archon uses dif-
ferent dataflows in the ReLU prediction phase and in the fused layer
evaluation phase.

In the ReLU prediction phase, weight reuse is the same as the
original bottleneck blocks, and limited in comparison to the fused

6

Appears in the Proceedings of the 35 th ACM International Conference on Supercomputing (ICS 2021)

Figure 9:ArchonPEmicroarchitecture. Colored components

are modified or extra components needed compared to a

conventional PE accelerator such as work [9]. Each PE has 6

accumulator modules and 4 identical lanes per accumulator.

Accumulator and Lane 1 are shown in details. A reference

table is provided that describes the data passed between PE

components.

evaluation stage. We therefore employ a dataflow that balances
weight and activation reuse: (i) we distribute one of the input di-
mensions (𝑋 in figure 5) horizontally across the PE array, and the
output channels of each convolution (either mid ch or 𝑁) across
the other PE array dimension; and (ii) we further map the input
channel dimension temporally within each PEs, so that the ternary
convolution can be done locally inside the PEs.

During fused-layer evaluation phase, we focus on the opportu-
nities for weight reuse: we use a weight-stationary dataflow that
distributes the 𝑋 and 𝑌 dimensions of the input fmaps across the
horizontal and vertical dimensions of the PE array.

5.2 Data Representation

Fused Weights. Fused weights are compressed to take advantage
of sparsity. Each individual segment along the mid ch dimension is
compressed separately in COO (coordinate) format [6], also used in
other accelerator designs (e.g., [3, 22, 28]). In COO, each non-zero
weight is stored as a (value, offset) pair, where the offset indicates
the weight’s index along the mid ch dimension. We allocate 10 bits
per offset, which allows for mid ch to be as large as 1024.

Ternary Weights. The quantized weights used for ReLU predic-
tion (discussed in section 3.3) are represented and stored densely
as 2-bit values.

Activations. Activations are stored without compression.

5.3 PE microarchitecture

Like most DNN accelerators [9, 10, 19, 31], Archon is a 2D array
of processing elements similar to figure 3, supported by a shared,
banked global buffer (GLB). The Archon PEs, however, differ sig-
nificantly from the simpler MAC-and-registers PEs because they

(a) before applying ReLU (b) after applying ReLU

Figure 10: Histogram of number of non-zero fused weights

to be accumulated in weight reconstruction before and after

applying ReLU during FusioNet inference on CIFAR100.

need to efficiently support two features: (a) applying the ReLU filter
masks (𝑅1 and 𝑅2) to incoming fused weights, and (b) accumulating
the fused weights that survived the ReLU filters.

Figure 9 shows the microarchitecture of a single Archon pro-
cessing element. It comprises three main components: masking
lanes, accumulator units, and the MAC unit. In addition, Archon
PEs also needs a buffer to store the ReLU mask predictions 𝑅1 and
𝑅2, in addition to the weight, ifmap, and ofmap buffers present in
the baseline PE from Figure 3.

Because the PEs are larger than baseline PEs, Archon has fewer
PEs in the same silicon area than the baseline unfused accelerator.
Nevertheless, the parallelism in the mask lanes and accumulator
units, together with the far fewer MAC operations needed, means
that Archon has higher throughput than the baseline unfused
accelerator (see Section 6.3).

Masking lanes. During the fused layer evaluation stage, the
masking lanes apply the predicted ReLU masks to fused weights.
During the ReLU prediction phase, they are used to filter out activa-
tions for which the ternary weights are 0. They therefore consist of
a mux that selects from among 0, the weight, and the 4-bit activa-
tion, and a unit that selects two bits (either 𝑅1 and 𝑅2 or the ternary
weight) that correspond to the 16-bit weight or 4-bit activation
from a 16-bit word. The selected bits are used to control the mux
that zeroes the weight or activation.

Accumulator units. During fused evaluation, the accumulator
units add together those fused weights that were not set to 0 in the
masking lanes. During the ReLU prediction phase, they perform
the ternary-weight convolution by either adding or subtracting
the activations as dictated by the corresponding ternary weight. In
prediction mode, each 16-bit adder operates as four 4-bit adders via
gating the carry chains; this allows 24 partial sums for the ternary
convolutions to be produced in each cycle.

The accumulator units first detect whether each incoming weight
(or activation) is zero; the non-zero elements are buffered in a short
first-in-first-out (FIFO) structure. As the non-zero elements leave
the FIFO, they are added together, and sent on to the MAC unit
whenever a full accumulated weight (or, in the prediction phase,
convolution output) has been accumulated. The FIFO allows the
accumulator to operate at line rate in the presence of irregular
weight and activation sparsity.

To select the number of logic lanes per pipeline, and the number
of pipelines per PE, we profiled several inference runs with FusioNet
on CIFAR100. We collected the number of non-zero weights in
each𝑚𝑖𝑑 𝑐ℎ after pruning, as well as the number of accumulated

7

Appears in the Proceedings of the 35 th ACM International Conference on Supercomputing (ICS 2021)

weights after applying ReLU prediction; the results are shown in
Figures 10a and 10b, respectively. 90% of the time, fewer than 24
non-zero fused weights are fetched in each𝑚𝑖𝑑 𝑐ℎ, and at most 6
weights are ultimately accumulated after ReLU prediction. Thus,
to ensure full throughput, we employ six accumulators in each PE,
and four masking lanes for each accumulator (24 lanes in total).

With this design, prediction masks can be reused among all
six accumulators in each PE, provided that the pipelines receive
weights at coordinates that differ only in the input and output
channel IDs (𝑀 and 𝑁 in Figure 1).

5.4 Operation Walk-Through

Archon operates in two different phases for each bottleneck block:
the prediction of the ReLU mask bits, illustrated with a walk-
through example in Figure 11, and the execution of the fused layers
to compute the final results, shown in Figure 12. We walk through
each phase below.

Prediction phase. Figure 11 shows how ReLU mask prediction
operates for a pointwise convolution on a 4 × 4 feature map with 2
channels ➊; the output feature map (i.e., the intermediate-channel
activations) has 4 channels (i.e., mid ch=4) ➋. In the walkthrough
example, these are distributed spatially among four PEs, with the
mid ch channels distributed horizontally and the 𝑋 dimension of
the ifmap distributed vertically ➌. For clarity, we only show one of
the PEs, and use one adder ➍ and two logic lanes ➏ in the PE.

In step 0, ternary weights and 4-bit ifmaps are fetched for the
worktile in each PE and stored in the weight and ifmap buffers.

In step 1, the activation at the head of the buffer is broadcast
to both lanes. Each lane also receives different ternary weights
that correspond to the same activation but different intermediate
channels. The LSB of each ternary weight is used to control the
mask lane mux ➏ to zero activations if the ternary weight is zero.

In step 2, the higher bit the ternary weight in each lane is used to
decide whether the activation should be accumulated or subtracted
from the partial sum being accumulated ➐. In prediction mode, the
adder operates as one separate 4-bit adder for each lane.

In step 3, the partial sums are either fed back into the adders or
written back to the ofmap buffer ➑. Finally, the sign is extracted to
determine the corresponding ReLU mask bit, and the activation is
stored in the memory hierarchy to be read in the next layer.

Finally, step 4 occurs when a partial sum is accumulated over
all the input channels, and applies batch normalization (BN) to the
activations. For the first ReLU layer, this requires both the additive
and multiplicative parts of BN because the activations are used
later; for the second ReLU layer, only the additive component is
needed because only the sign is needed to compute the ReLU mask.

Predicting the ReLU masks for the next (and final) ReLU layer
goes through the same process, but only uses the activations to
determine the corresponding mask bits, and does not store them.

Fused layer convolution phase. Figure 12 shows a walk-through
example of the same hardware operating in the fused convolution
phase. It shows two accumulator units ➑ with their corresponding
non-zero detectors ➐, and two lanes ➎/➏ for each accumulator
unit. Each accumulator operates on weights corresponding to a
different intermediate channel in the original bottleneck (mid ch).

In step 0, the fused weight indices are fetched for both accu-
mulator units; for each accumulator, we fetch enough weights to
fill all masking lanes for each accumulator (in this figure, 2 per
accumulator unit). The indices are split into upper bits, which are
used to address the ReLU prediction mask buffer, and lower bits,
which are used to extract ReLU bits from the fetched mask word.

In step 1, the prediction masks are fetched from the prediction
buffer at word granularity. In this example, the two MSBs of the
weight address are decoded to a 4-bit one-hot bit vector ➌, and used
to decide which words for 𝑅1 and 𝑅2 should be fetched from the
prediction buffer ➋.In the example, based on the decoded indices,
words 1 to 3 will be fetched.

In step 2, the LSBs of each weight index ➍ are sent to their
masking lanes, where they are anded ➎ with the ReLU prediction
words from step 1 to select the relevant 𝑅1 and 𝑅2 mask bits and
and them together. This results in a single bit ➏ that indicates
whether the non-zero fused weight ➊ should be replaced by zero
due to either of ReLU masks.

In step 3, the non-zero detection units ➐ receives 2 weights
from the two lanes that feed the corresponding accumulator unit
➒, and discards the zero weights; non-zero weights are sent to the
accumulator buffer ➑.

In step 4, the accumulator ➒ receives non-zero weights from the
buffer and adds them to its running sum to reconstruct the weight
that will eventually be applied to the corresponding activation.
Completed reconstructed weights are written to the ofmap buffer.

Finally, in step 5, the reconstructed weights are read from the
ofmap buffer and are multiplied by the related activations in the
MAC unit ➓; this results in partial sums that are accumulated until
the entire convolution operation is complete.

6 EVALUATION

6.1 Methods

Architecture baselines. We compare Archon to the state-of-
the-art DNN accelerator in [9], as well as a version that supports
inference with sparse weights but not bottleneck layer fusion. To
obtain energy and latency, we use Timeloop [30] and Accelergy [39]
to model the baseline accelerators, and a custom cycle-level model
together with Accelergy to model Archon. The hardware accelera-
tors were configured as shown in Table 3.

DNN model baselines. To evaluate FusioNet, we use three
modern CNNs that rely on bottleneck blocks: MobileNet v2 [32],
MnasNet [37], and ShuffleNet [42]. For training and accuracy mea-
surements, all networks were implemented in TensorFlow [1].

Task and training. Models were trained using SGD with mo-
mentum on the CIFAR10 and CIFAR100 [21] image classification
tasks for 146 epochs, composed of 6 warmup epochs with a linear
LR schedule and 140 epochs with cosine decay LR scheduling [26].
Normalizaton, as well as random cropping and mirroring for aug-
mentation, were used during training. For CIFAR100 experiments,
all the networks had a PW convolution following their bottleneck
blocks sequence that mapped to 1260 channels. For CIFAR10 exper-
iments, FusioNet used the same mechanism while other networks
had the same layers following their bottleneck sequence as in their
original papers.

8

Appears in the Proceedings of the 35 th ACM International Conference on Supercomputing (ICS 2021)

Figure 11: Example of a ReLU prediction for a pointwise convolution in Archon. Spatial and temporal mapping of different

dimensions are shown on the left and a snapshot of the first cycle in PE1 is shown on the right. Step0: filling buffers - Step1:

applying ternary weight - Step2: ternary convolution - Step3: ofmap buffer access Step4: scale by constant

Figure 12: Example of a fused computation for a bottleneck block in Archon PE. Step0: fetching and decoding weight indices

- Step1: pred-buffer access - Step2: applying ReLU masks - Step3: filtering non-zero Step4: weight reconstruction - Step5:

computing ofmap

Table 3: configurations of Archon and baseline accelerators

Archon baseline
Technology 45nm 45nm

Number of PEs 64PEs 72PEs

GLB banks: 25
bank size: 64 B

banks: 32
bank size: 64 B

Buffer(per PE)
input(REGs): 64 B

output(REGs): 32 B
weight(SRAM): 256 B

input(REGs): 48 B
output(REGs): 32 B

weight(SRAM): 448 B

Compute(per PE) MAC (16-bit): 1
Adders (16-bit): 6 MAC (16-bit): 1

Logic Lanes
(per Adder) 4 N/A

Total Area 1.53𝑚𝑚2 1.44𝑚𝑚2

Pruning. We follow the approach in [43] and use bitmasks to
deactivate lower-magnitude weights of a pretrained network, grad-
ually increasing sparsity on a polynomial schedule. Once target
sparsity is reached, fine-tuning recovers accuracy. We prune point-
wise layers to 80% and depthwise layers to 70% sparsity.

ReLU prediction. Ternary weights used in the ReLU predictor
are initialized using the pruned weights and quantized to ternary.
They are then fine-tuned as in TWN [23], using the predicted ReLU
mask as the activation function in the pruned network.

Table 4: CIFAR10Validation accuracy after pruning andReLU

prediction. Models are (b) baseline or (m) modified as in Ta-

ble 1.

CNN vanilla pruned with pred.
MobileNet v2(b) 94.26% 93.45%
MobileNet v2(m) 94.27% 94.01% 93.5%

ShuffleNet(b) 91.78% 91.50%
ShuffleNet(m) 91.93% 90.86% 90.0%
MnasNet(b) 94.53% 94.16%
MnasNet(m) 94.39% 93.64% 93.03 %

FusioNet 95.29% 94.53% 94.24%

Silicon area. Area for memories and logic was estimated using
CACTI [38] and Aladdin [33] through Timeloop [30]. Both storage
and logic in Archon PEs were accounted for, and all accelerators
were configured to take the same silicon area (see Table 3 for details).

6.2 Accuracy and Training Time

Tables 4 and 5 show the accuracy of FusioNet as well as the three
baseline models for CIFAR-10 and CIFAR100 respectively, in the
original form and in the version with bottlenecks resized for fusion
as in Table 1. For each network, we also show the accuracy after
the pruning and ReLU prediction steps.

All networks perform very close to the baseline accuracy, with
only the modified ShuffleNet and modified MnasNet exceeding a 1%

9

Appears in the Proceedings of the 35 th ACM International Conference on Supercomputing (ICS 2021)

Table 5: CIFAR100 validation accuracy after pruning and

ReLU prediction.

CNN vanilla pruned with pred.
MobileNet v2 78.19% 77.34%

MnasNet 78.16% 77.05%
FusioNet 79.57% 78.47% 76.51%

Figure 13: Training curve for FusioNet, baseline andmodified

MobileNet v2 CNNs on the CIFAR10 dataset.

(a) total cycles (b) total energy

Figure 14: Inference runtime and energy for CIFAR10, nor-

malized to the fused version. Dense and sparse networks are

executed on baseline accelerators, and fused networks on

Archon.

drop. FusioNet outperforms all of the baselines in the vanilla form
— not unexpected as it has more MACs — but also matches the ac-
curacy of the vanilla baselines on CIFAR10 even when pruning and
ReLU prediction are applied. On CIFAR100, FusioNet experiences a
slight accuracy drop when predictor is in place; nevertheless, accu-
racy is always within 1% of the pruned baseline models. FusioNet
is also much more efficient when executed with layer fusion.

Figure 13 shows how accuracy improves when training FusioNet,
the baseline and the modified MobileNet v2 models on CIFAR10.
Both top accuracy and convergence time are very similar for all
models, demonstrating that the modifications we use for efficient
fusion do not affect training efficiency.

6.3 Inference Speedup and Energy

Figure 14a shows the execution times of the baseline CIFAR10
models — with and without weight sparsity — and fusion-optimized
variants, executed on the baseline dense and sparse accelerators and
Archon, respectively. The fusion-optimized models on Archon
are much faster than the dense baseline (4.9×–8×) and noticeably
faster than the sparse baseline (1.3×–2.1×).

Figure 15a, in turn, compares FusioNet onArchon to MobileNet v2
and MnasNet for CIFAR10 on the baseline accelerators. FusioNet is
always faster, 5.8×–6.3× compared to the dense baseline and 2.1×
compared to the sparse baseline. Similarly, Figure 16a shows the

(a) total cycles (b) total energy

Figure 15: CIFAR10 Inference runtime and energy. Data in

both figures are normalized to the fusion execution of Fu-

sioNet. Dense and Sparse networks are executed on baseline

accelerators while FusioNet on Archon.

(a) total cycles (b) total energy

Figure 16: CIFAR100 Inference runtime and energy. Data in

both figures are normalized to the fusion execution of Fu-

sioNet. Dense and Sparse networks are executed on baseline

accelerators while FusioNet on Archon.

(a) MobileNet v2

(b) ShuffleNet

Figure 17: Cycles breakdown for executing two CNNs for

CIFAR10 with: (left) a dense accelerator, (middle) a sparse

accelerator and (right) Archon.

same comparison, but for CIFAR100. Like for CIFAR10, FusioNet is
always faster, 4.9×–5.3× compared to the dense baseline and 1.9×
compared to the sparse baseline. Note that the dimensions of the
bottleneck blocks for the models in CIFAR10 and CIFAR100 are the
same, and the main difference between the two networks is what
follows the bottlenecks.

Finally, Figure 17 shows the breakdown of processing each bot-
tleneck block of MobileNet v2 and ShuffleNet for CIFAR10 on the
baseline accelerators and Archon. For the unfused networks, the

10

Appears in the Proceedings of the 35 th ACM International Conference on Supercomputing (ICS 2021)

(a) Executing fused FusioNet

(b) Fusion overhead for execution fused FusioNet

Figure 18: Energy breakdown for FusioNet for CIFAR10 on

Archon.

pointwise layers take up the lion’s share of the cycles to map fea-
tures to and from the intermediate channel dimension. This vali-
dates the key intuition behind layer fusion and Archon: removing
the intermediate bottleneck component with many channel dimen-
sion through fusion. Fused networks on Archon are always faster;
nearly all of the computation is in the fused convolution layers,
with little overhead due to the ReLU prediction phase.

6.4 Energy

Figure 14b shows the overall energy consumption for the three CI-
FAR10 baselines, again in sparse, dense, and fused versions, and ex-
ecuted on the corresponding hardware; Figure 15b shows the same
data when FusioNet is compared to the baselines. FusioNet needs
around 34% more energy compared to iso-accuracy MobileNet and
26% more energy compared to iso-accuracy MnasNet, a cost that
is much less than the improvement in inference speed. Figure 16b
shows the same data but for CIFAR100 models, and the results are
similar to the results for CIFAR10 models.

however, the problem is not severe and the speedup gained by
FusioNet is still much more than the extra energy it needs.

Figure 18a shows the energy breakdown of executing FusioNet
for CIFAR10 on Archon. The most significant sources of energy
consumption are prediction steps for the two ReLU layers, followed
by the extra operations needed to process the fused blocks (e.g.,
loading the fused weights and accessing the prediction buffer),
denoted as fusion overhead. Most of the energy is spent on ReLU
prediction; while this contributes little to execution time, it requires
large intermediate-channel feature maps to be moved from and
back to memory.

Finally, Figure 18b shows the breakdown of the overheads inher-
ent in executing the fused convolutions for CIFAR10. Most of the
overhead is due to streaming the fused weights from memory; this
is both because there are more fused weights than original weights
even after pruning, and the fact that Archon does not employ an
on-PE weight buffer during fused execution. Next in line is access-
ing the prediction buffers, followed by the energy needed to store
and refetch prediction masks from memory. Other operations such

as accumulation and decoding the weight indices do not make a
significant contribution to the overheads.

7 RELATEDWORK

Neural Network Accelerators. A plethora of dense and sparse
neural network accelerators have been proposed [3, 9, 10, 12, 13,
19, 22, 28, 31]. While each of these accelerators are designed for
different types of sparsity, operation mappings, and distinct com-
pression formats, none can efficiently execute neural networks that
contain fused convolutions.
Pruning. In this work, we gradually prune our network using a
magnitude-based, unstructured approach, as described by Zhu et
al. [43]. However, the specific pruning method is orthogonal to our
work, and other pruning techniques [24, 27, 41] can be used instead.
Bottleneck Blocks. The proposed FusioNet bears resemblance to
many neural network designs [16, 17, 32, 37, 42] that utilize variants
of bottleneck layers in order to make computations more efficient
for edge devices. However, the dimensions of FusioNet are selected
while keeping in mind layer fusion; specifically, fusion permits
intermediate dimensions that would be impractically large in an
unfused design, which results in increased accuracy.
Prior Research on DNN “Fusion.” Some prior work has proposed
very limited “fusion” within neural networks. Several of these pro-
posed to fuse the convolutional layer with batch normalization and
ReLU [5, 8, 20]. In contrast to our proposal, these transformations
are mathematically straightforward, and do not fuse across non-
linearities. Likewise, the FusedCNN [4] accelerator also does not
fuse the computation as we do in this paper; instead, layer compu-
tations are performed as normal while keeping the intermediate
activations in on-chip storage. To the best of our knowledge, our
work is the first design that replaces multiple layer computations
with one fused computation.
Low-Precision Evaluation as Prediction. Several prior works
have proposed using cheaper computations to predict potentially
ineffectual computations in the future. Several [7, 35, 36] propose
to perform bit-serial multiplications starting with the leading bits
of the activations in order to predict the sign of the output and de-
termine if the computation can terminiate early (since any negative
outputs are eventually squashed to zero by ReLU). Similarly, Sna-
PEA [2] calculates the MACs that involve positive weights first, and
only then decides whether the remaining MAC operations (with
negative weights) are necessary. Other work [34] relies on depth-
wise convolutions to predict the signs of the main convolution
output. Similarly, DUET [25] performs low-precision convolutions
and uses them to predict which of the low-precision outputs require
higher-precision arithmetic to keep the model accuracy the same as
the baseline. These prior works use partial computation results only
to terminate computation of single convolutions early; in contrast,
our work uses a separate prediction computation to enable fusion
across multiple convolutional layers.

8 CONCLUSION

This paper introduces (i) predictive layer fusion for efficient exe-
cution of CNN bottleneck blocks, (ii) a hardware architecture and
dataflow designed to execute fused networks, and (iii) a technique
to optimize CNN models for fusion.

11

Appears in the Proceedings of the 35 th ACM International Conference on Supercomputing (ICS 2021)

Combined, these techniques yield up to 5.8 × faster inference
compared to compact networks executed on a dense DNN accelera-
tor, and 2.1 × faster inference compared to when these networks
are pruned and executed on a sparse DNN accelerator.

9 ACKNOWLEDGEMENTS

The authors are grateful to the anonymous reviewers for insightful
feedback and helpful suggestions.

This material is based on research sponsored by Air Force Re-
search Laboratory (AFRL) and Defense Advanced Research Project
Agency (DARPA) under agreement number FA8650-20-2-7007, and
by the Natural Sciences and Engineering Research Council of Canada
(NSERC) under award number NETGP 485577-15. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of Air
Force Research Laboratory (AFRL), Defense Advanced Research
Project Agency (DARPA), the U.S. Government, the Natural Sci-
ences and Engineering Research Council of Canada (NSERC), or
the Government of Canada.

REFERENCES

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafał Józefowicz, Łukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
http://tensorflow.org/ Software available from tensorflow.org.

[2] Vahideh Akhlaghi, Amir Yazdanbakhsh, Kambiz Samadi, Rajesh K Gupta, and
Hadi Esmaeilzadeh. 2018. Snapea: Predictive early activation for reducing com-
putation in deep convolutional neural networks. In 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 662–673.

[3] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie En-
right Jerger, and Andreas Moshovos. 2016. Cnvlutin: Ineffectual-Neuron-Free
Deep Neural Network Computing. In 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA). IEEE, 1–13.

[4] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. 2016. Fused-layer
CNN accelerators. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 1–12. https://doi.org/10.1109/MICRO.2016.7783725

[5] Michael Anderson, Evangelos Georganas, Sasikanth Avancha, and Alexander
Heinecke. 2018. Tensorfolding: Improving convolutional neural network perfor-
mance with fused microkernels. In Proc. Int. Conf. High Perform. Comput., Netw.,
Storage, Anal.(SC).

[6] Brett W Bader and Tamara G Kolda. 2008. Efficient MATLAB computations with
sparse and factored tensors. SIAM Journal on Scientific Computing 30, 1 (2008),
205–231.

[7] Jiho Chang, Yoonsung Choi, Taegyoung Lee, and Junhee Cho. 2018. Reduc-
ing MAC operation in convolutional neural network with sign prediction. In
2018 International Conference on Information and Communication Technology
Convergence (ICTC). IEEE, 177–182.

[8] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. {TVM}:
An automated end-to-end optimizing compiler for deep learning. In 13th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
18). 578–594.

[9] Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. 2017. Eyeriss:
An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks. IEEE Journal of Solid-State Circuits 52, 1 (2017), 127–138.

[10] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo,
Xiaobing Feng, Yunji Chen, and Olivier Temam. 2015. ShiDianNao: Shifting vision
processing closer to the sensor. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture. 92–104.

[11] Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, and Christos Kozyrakis. 2019.
Tangram: Optimized coarse-grained dataflow for scalable nn accelerators. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems. 807–820.

[12] Ashish Gondimalla, Noah Chesnut, Mithuna Thottethodi, and TN Vijaykumar.
2019. SparTen: A sparse tensor accelerator for convolutional neural networks. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microar-
chitecture. 151–165.

[13] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz,
and William J Dally. 2016. EIE: efficient inference engine on compressed deep
neural network. In Proceedings of the 43rd International Symposium on Computer
Architecture. 243–254.

[14] Song Han, Huizi Mao, and W. Dally. 2016. Deep Compression: Compressing
Deep Neural Network with Pruning, Trained Quantization and Huffman Coding.
CoRR abs/1510.00149 (2016).

[15] Song Han, Jeff Pool, John Tran, and William J Dally. 2015. Learning both weights
and connections for efficient neural networks. In Proceedings of the 28th Interna-
tional Conference on Neural Information Processing Systems-Volume 1. 1135–1143.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 770–778. https://doi.org/10.1109/CVPR.2016.90

[17] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-
ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. 2019.
Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference
on Computer Vision. 1314–1324.

[18] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International conference
on machine learning. PMLR, 448–456.

[19] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S.
Bhatia, N. Boden, A. Borchers, R. Boyle, P. Cantin, C. Chao, C. Clark, J. Coriell, M.
Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland,
R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,
A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A.
Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix,
T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E.
Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W.
Wang, E. Wilcox, and D. H. Yoon. 2017. In-datacenter performance analysis of a
tensor processing unit. In 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA). 1–12.

[20] Wonkyung Jung, Daejin Jung, , Byeongho Kim, Sunjung Lee, Wonjong Rhee,
and Jung Ho Ahn. 2019. Restructuring Batch Normalization to Accelerate CNN
Training. arXiv:1807.01702 [cs.CV]

[21] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images.
Technical Report.

[22] Ching-En Lee, Yakun Sophia Shao, Jie-Fang Zhang, Angshuman Parashar, Joel
Emer, Stephen W Keckler, and Zhengya Zhang. [n.d.]. Stitch-x: An accelerator
architecture for exploiting unstructured sparsity in deep neural networks.

[23] Fengfu Li and Bin Liu. 2016. Ternary Weight Networks. CoRR abs/1605.04711
(2016).

[24] Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang, Liujuan Cao, Qixiang
Ye, Feiyue Huang, and David Doermann. 2019. Towards optimal structured
cnn pruning via generative adversarial learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2790–2799.

[25] Liu Liu, Zheng Qu, Lei Deng, Fengbin Tu, Shuangchen Li, Xing Hu, Zhenyu
Gu, Yufei Ding, and Yuan Xie. 2020. DUET: Boosting Deep Neural Network Effi-
ciency on Dual-Module Architecture. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 738–750.

[26] Ilya Loshchilov and Frank Hutter. 2017. SGDR: Stochastic Gradient Descent with
Warm Restarts. arXiv: Learning (2017).

[27] Sangkug Lym, Esha Choukse, Siavash Zangeneh, Wei Wen, Sujay Sanghavi, and
Mattan Erez. 2019. PruneTrain: fast neural network training by dynamic sparse
model reconfiguration. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 1–13.

[28] Bradley McDanel, Sai Qian Zhang, HT Kung, and Xin Dong. 2019. Full-stack
optimization for accelerating cnns using powers-of-two weights with fpga vali-
dation. In Proceedings of the ACM International Conference on Supercomputing.
449–460.

[29] Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th International Conference
on International Conference on Machine Learning. 807–814.

[30] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,
Victor A Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany,
Stephen W Keckler, and Joel Emer. 2019. Timeloop: A systematic approach to
dnn accelerator evaluation. In 2019 IEEE international symposium on performance
analysis of systems and software (ISPASS). IEEE, 304–315.

12

http://tensorflow.org/
https://doi.org/10.1109/MICRO.2016.7783725
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1807.01702

Appears in the Proceedings of the 35 th ACM International Conference on Supercomputing (ICS 2021)

[31] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. Emer,
S. W. Keckler, and W. J. Dally. 2017. SCNN: An accelerator for compressed-sparse
convolutional neural networks. In 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA). 27–40. https://doi.org/10.1145/
3079856.3080254

[32] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
4510–4520.

[33] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks. 2014.
Aladdin: A pre-rtl, power-performance accelerator simulator enabling large
design space exploration of customized architectures. In 2014 ACM/IEEE 41st
International Symposium on Computer Architecture (ISCA). IEEE, 97–108.

[34] Gil Shomron, Ron Banner, Moran Shkolnik, and Uri Weiser. 2020. Thanks for
nothing: Predicting zero-valued activations with lightweight convolutional neural
networks. In European Conference on Computer Vision. Springer, 234–250.

[35] Md Kamruzzaman Shuvo, David E Thompson, and Haibo Wang. 2020. MSB-First
Distributed Arithmetic Circuit for Convolution Neural Network Computation.
In 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems
(MWSCAS). 399–402. https://doi.org/10.1109/MWSCAS48704.2020.9184599

[36] Mingcong Song, Jiechen Zhao, Yang Hu, Jiaqi Zhang, and Tao Li. 2018. Predic-
tion based execution on deep neural networks. In 2018 ACM/IEEE 45th Annual

International Symposium on Computer Architecture (ISCA). IEEE, 752–763.
[37] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew

Howard, and Quoc V Le. 2019. Mnasnet: Platform-aware neural architecture
search for mobile. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2820–2828.

[38] Shyamkumar Thoziyoor, Naveen Muralimanohar, Jung Ho Ahn, and Norman P
Jouppi. 2008. CACTI 5.1. Technical Report. Technical Report HPL-2008-20, HP
Labs.

[39] Yannan N. Wu, Joel S. Emer, and Vivienne Sze. 2019. Accelergy: An Architecture-
Level Energy Estimation Methodology for Accelerator Designs. In 2019 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). 1–8.

[40] Shunzhi Yang, Zheng Gong, Kai Ye, Yungen Wei, Zheng Huang, and Zhenhua
Huang. 2019. EdgeCNN: Convolutional Neural Network Classification Model
with small inputs for Edge Computing. arXiv:1909.13522 [cs.CV]

[41] Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping Wang. 2019. Gate
decorator: Global filter pruning method for accelerating deep convolutional
neural networks. arXiv preprint arXiv:1909.08174 (2019).

[42] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. Shufflenet: An ex-
tremely efficient convolutional neural network for mobile devices. In Proceedings
of the IEEE conference on computer vision and pattern recognition. 6848–6856.

[43] Michael Zhu and Suyog Gupta. 2017. To prune, or not to prune: exploring the
efficacy of pruning for model compression. arXiv:1710.01878 [stat.ML]

13

https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1109/MWSCAS48704.2020.9184599
https://arxiv.org/abs/1909.13522
https://arxiv.org/abs/1710.01878

	Abstract
	1 Introduction
	2 Background
	2.1 Bottleneck Blocks
	2.2 CNN Accelerator Architecture

	3 Predictive Layer Fusion
	3.1 Layer fusion without ReLU
	3.2 ReLU as a mask filter
	3.3 Predicting the ReLU mask

	4 Fusion-optimized CNNs
	4.1 Network architecture adaptation for fusion
	4.2 Pruning

	5 Archon Architecture
	5.1 Data Reuse and Dataflow
	5.2 Data Representation
	5.3 PE microarchitecture
	5.4 Operation Walk-Through

	6 Evaluation
	6.1 Methods
	6.2 Accuracy and Training Time
	6.3 Inference Speedup and Energy
	6.4 Energy

	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References

