
Appears in the 2020 Workshop on Approximate Computing Across the Stack (WAX 2020)

Decoupling Approximation and Cache Compression
Amin Ghasemazar

University of British Columbia

aming@ece.ubc.ca

Mohammad Ewais

University of Toronto

mewais@ece.utoronto.ca

Mieszko Lis

University of British Columbia

mieszko@ece.ubc.ca

Abstract
In this paper, we make the case that approximation and

compression should be decoupled: that is, approximation

should be designed as an optional component in a standard

cache compression pipeline.

As proof of concept, we combine an approximation mod-

ule with several existing cache compression schemes; through

simulation-based evaluation on a range of approximable

workloads, we show that decoupled designs offer higher

compression than bespoke approximate caches without sac-

rificing performance.

1 Introduction
Approximate caches [11, 12] can substantially increase ef-

fective cache capacity by taking advantage of approximate
value locality — the observation that many values stored in a

cache are so close that replacing one value by another makes

little difference to the effectiveness of many applications.

This locality can be converted to increased cache capac-

ity by detecting cachelines with approximately equal value

sequences, storing only one of those lines in the cache, and

returning an acceptable approximation when a line is re-

trieved. For example, Doppelgänger [12] treats the average

of all values in the cacheline as a “signature” and stores only

one representative cacheline for each signature.

Existing designs, however, share two significant limita-

tions. First, because they are in effect lossy compression

techniques, they can only compress data that identified as

approximable (e.g., by the programmer), and are of little use

for applications where approximation is not practical. Sec-

ond, because approximation is an integral part of the lossy

compression mechanism, they can only compress approx-

imable data that fit a single redundancy pattern: for example,

Doppelgänger captures value similarity between cachelines,

but ignores value similarity within each cacheline [12], and

Bunker Cache is only effective on image-like data [11]. Both

of these are serious barriers to adoption in commercial CPUs.

In this paper, we make the case that approximation and

compression are orthogonal, complementary techniques that

should be decoupled in cache designs. Such a design, illus-

trated in Figure 1, would comprise two stages: (a) a light-

weight approximation stage, applied only to data identi-

fied as approximable, and (b) a cache compression stage,

applied to all data, that leverages one of the many exist-

ing cache compression proposals [1–3, 5, 6, 9, 10, 15]. To

demonstrate the practicality of this approach, we combine

approximation with three representative cache compression

cacheline Y Approximation
Module

Approximate
?

Compression
Module

N

(a) (b)

Figure 1. A decoupled approximate cache design that sepa-

rates the approximation (a) and compression (b) aspects.

techniques [6, 10, 15]. The decoupled paradigm allows the

designer to choose a compression algorithm that is suitable

for the application rather than one that is dictated by the

approximate cache design, which in turn can result in better

space savings: simulations on a range of applications from

AxBench [16], Parsec [4], and SPEC [7] show that, under the

same quality-of-results criteria, decoupled designs achieve

up to 63% more compression (7.4× geomean) than a bespoke

design like Doppelgänger. Importantly, decoupled designs

can also compress non-approximable data, potentially mak-

ing approximate caches more attractive for commercial ap-

plications.

2 Experimental setup
Quality of results criteria. For all benchmarks, we deter-

mined quality cutoffs where degradation was (a) barely no-

ticeable visually or (b) did not compromise the purpose of

the benchmark. The quality metrics are shown in Table 1.

We focused on floating-point array structures, and applied

the maximum single approximation level suitable for the en-

tire workload; more approximation may be possible by using

per-datastructure levels. Approximation and compression

are applied only at the LLC level whenever a new cacheline

is brought in from DRAM; decompression and deapproxima-

tion are applied whenever the line is read or written.

Bespoke approximate cache. We implemented Dop-

pelgänger [12], the best-performing approximate cache pro-

posal to date (the more recent Bunker Cache [11] has worse

compression [11, fig. 22]) Value ranges for the approxima-

tion maps were taken from recorded runtime minimum and

maximum values in the manually annotated approximable

regions of each benchmark using the 14-bit map space.

BM fp64/fp32 Quality BM fp64/fp32 Quality

swaptions 45/0 MSE<1 fft 0/17 MSE<82.5
streamcluster 0/11 AE=0% sobel 0/18 PSNR>60
calculix 47/0 MSE=0 vips 43/17 PSNR>60
inversek2j 0/17 MSE<5e-3 milc 32/0 MSE<5e-8
blackscholes 0/18 MSE<5e-3 ferret 0/5 AE=0%
kmeans 0/6 PSNR>50 namd 32/0 AE<1e3
cactusADM 38/0 MSE<2e-7 jmeint 0/17 RE<5e-3

Table 1. Quality cut-off levels for fp64/fp32 and QoR criteria.

1

Appears in the 2020 Workshop on Approximate Computing Across the Stack (WAX 2020)

blackscholes

0%

20%

40%

60%

80%

100%

co
m

p
re

ss
ed

 s
iz

e

calculixferretfft inversek2j jmeint milcnamd sobel soplexstreamcluster swaptions vips gmean

doppelgänger dedup approx+dedup BDI approx+BDI 2DCC approx+2DCC

kmeans

Figure 2. Compressed working sizes for Doppelgänger and several decoupled approximation+compression combinations.

Decoupled approximation scheme. To approximate

floating-point numbers, we zero the 𝑠 rightmost bits of the

mantissa, where 𝑠 is chosen per application according to the

QoR metrics above; we then right-shift the entire value by

𝑠 bits. When an approximate value is fetched, we left-shift

the stored value by 𝑠 bits and use that to service the request.

This mechanism, illustrated in Figure 3(a), naturally lends

itself to a simple, fast hardware implementation.

Like prior work [11–13], we assume that approximate

data structures are annotated by the programmer. In our

design, the approximation level 𝑠 is included in every cache

request, as is a single bit identifying the datatype (fp32 or

fp64); this can be implemented either by extending the ISA

with approximate variants of load/store instructions or by

adding a hardware region lookup table that can be filled by

the application and consulted during load/store execution.

To fairly compare with Doppelgänger, we only approxi-

mate to cachelines where all elements have the same type.

Decoupled compression schemes. We combined this

approximation scheme with three representative cache com-

pression techniques: exact deduplication (Dedup) [15], base-

delta-immediate compression (BDI) [10], and a proposal that

combines both (2DCC) [6]. Briefly, BDI compresses a line

containing values within a close range by storing one uncom-

pressed “base” (e.g., 64 bits) followed by shorter offsets (e.g.,

16 bits) that can be added to the base to recreate the original

value. Dedup, on the other hand, compresses the cache by

detecting exact duplicate cachelines and storing only one

copy in the data array. 2DCC captures both intra-line and

inter-line redundancy, effectively combining BDI and Dedup.

Compression is applied after approximation and before

deapproximation, as shown in Figure 3(b).

Simulation environment. We implemented all schemes

in ZSim [14]; both functionality (computing with approxi-

mate values) and all the timing events on and off the critical

R
ig

h
t

sh
if

t
b

y
1

6
bi

tsApproximation
3F00

19
03
1F

3F00
19
03
1F

00003F00
00003F19
00003F03
00003F1F

00003F00
00003F19
00003F03
00003F1F

3F008E69
3F19A240
3F03DD66
3F1FB949

3F008E69
3F19A240
3F03DD66
3F1FB949

3F008E69
3F19A240
3F03DD66
3F1FB949

In
co

m
in

g
d

at
a

B
as

e
-d

el
taCompression

mechanismModule (s=16)

(a) (b)

Figure 3. Approximating and compressing a cacheline from

jmeint [8, 16] using a base-delta representation [10].

path were modelled. The simulated system was configured

as shown in Table 2. We simulated a range of floating-point-

focused benchmarks from AxBench [16], SPEC2006 [7], and

Parsec 3.0 [4]. Input sizes were selected to fill a 2MB cache

whenever possible. For each benchmark, we simulated dif-

ferent approximation levels and chose the highest approxi-

mation level consistent with acceptable QoR (vide supra).

3 Results and discussion
Figure 2 shows the savings from compression and approx-

imation normalized to the uncompressed footprint for all

caches, measured as a running average over each workload’s

region of interest. The decoupled approximate caches reduce

workload footprints to as little as 36.5% (sobel) and 60% on

average (gmean); all outperform Doppelgänger, which only

manages to reduce the footprint to 95% (gmean).

This is largely due to two factors. One is that the decoupled

approximate caches capture the intra-line redundancy cre-

ated by the approximation stage (e.g., fft, inversek2j, jmeint,

sobel, streamcluster); because Doppelgänger effectively im-

plements near-deduplication, it cannot capture intra-line

effects. The other is that the decoupled designs can also com-

press non-approximable data (e.g., ferret).

All of the approximate caches perform on par with the

2MB uncompressed baseline (±1–3% (gmean), not shown).

Overall, these results make a case for decoupling approxi-

mation and cache compression — general-purpose designs

where approximation is implemented as a separate, optional

stage in the cache compression pipeline. These achieve better

compression than bespoke approximate caches, and offer a

practical strategy for introducing approximation in commer-

cial cache hierarchies.

component configuration

CPU x86-64 1 GHz, 4-wide OoO, 80-entry ROB
private L1$ 16KB, 4-way, 1-cycle latency, 64B blocks, LRU
private L2$ 128KB, 8-way, 3-cycle latency, LRU
shared LLC 2MB (baseline) / 1MB (compressed variants),

single bank, 16-way, inclusive, 6-cycle latency,
main memory 1GB, 160-cycle latency

Table 2. Simulated system configuration.

2

Appears in the 2020 Workshop on Approximate Computing Across the Stack (WAX 2020)

References
[1] Alaa R. Alameldeen and David A. Wood. 2004. Frequent pattern com-

pression: A significance-based compression scheme for L2 caches. Tech-

nical Report 1500. University of Wisconsin-Madison.

[2] Angelos Arelakis, Fredrik Dahlgren, and Per Stenström. 2015. HyComp:

A Hybrid Cache Compression Method for Selection of Data-type-

specific Compression Methods. In MICRO.

[3] Angelos Arelakis and Per Stenström. 2014. SC
2
: A Statistical Compres-

sion Cache Scheme. In ISCA.

[4] Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D.

Dissertation. Princeton University.

[5] X. Chen, L. Yang, R. P. Dick, L. Shang, and H. Lekatsas. 2010. C-Pack:

A High-Performance Microprocessor Cache Compression Algorithm.

IEEE Transactions on Very Large Scale Integration Systems 18, 8 (Aug

2010), 1196–1208.

[6] Amin Ghasemazar, Mohammad Ewais, Prashant Nair, and Mieszko

Lis. 2020. 2DCC: Cache Compression in Two Dimension. In DATE.

[7] John L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions.

SIGARCH Comput. Archit. News 34, 4 (Sept. 2006), 1–17. https:
//doi.org/10.1145/1186736.1186737

[8] Tomas Möller. 1997. A Fast Triangle-Triangle Intersection Test. Journal
of Graphics Tools 2, 2 (1997), 25–30. https://doi.org/10.1080/10867651.
1997.10487472 arXiv:http://dx.doi.org/10.1080/10867651.1997.10487472

[9] B. Panda and A. Seznec. 2016. Dictionary sharing: An efficient cache

compression scheme for compressed caches. In MICRO.

[10] Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Phillip B. Gibbons,

Michael A. Kozuch, and Todd C. Mowry. 2012. Base-delta-immediate

Compression: Practical Data Compression for On-chip Caches. In

PACT.

[11] Joshua San Miguel, J. Albericio, Natalie Enright Jerger, and A. Jaleel.

2016. The Bunker Cache for spatio-value approximation. In MICRO.

1–12.

[12] Joshua San Miguel, Jorge Albericio, Andreas Moshovos, and Natalie

Enright Jerger. 2015. Doppelgänger: A Cache for Approximate Com-

puting. In MICRO.

[13] Joshua San Miguel, M. Badr, and Natalie Enright Jerger. 2014. Load

Value Approximation. In MICRO.

[14] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and Accurate

Microarchitectural Simulation of Thousand-core Systems. In ISCA.

[15] Yingying Tian, Samira M. Khan, Daniel A. Jiménez, and Gabriel H.

Loh. 2014. Last-level Cache Deduplication. In ICS.

[16] A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-Kamran.

2017. AxBench: A Multiplatform Benchmark Suite for Approximate

Computing. IEEE Design Test 34, 2 (April 2017), 60–68. https://doi.
org/10.1109/MDAT.2016.2630270

3

https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1080/10867651.1997.10487472
https://doi.org/10.1080/10867651.1997.10487472
http://arxiv.org/abs/http://dx.doi.org/10.1080/10867651.1997.10487472
https://doi.org/10.1109/MDAT.2016.2630270
https://doi.org/10.1109/MDAT.2016.2630270

	Abstract
	1 Introduction
	2 Experimental setup
	3 Results and discussion
	References

